On the K-theory of tubular algebras
Kussin, Dirk
Colloquium Mathematicae, Tome 84/85 (2000), p. 137-152 / Harvested from The Polish Digital Mathematics Library

Let Λ be a tubular algebra over an arbitrary base field. We study the Grothendieck group K0(Λ), endowed with the Euler form, and its automorphism group Aut(K0(Λ)) on a purely K-theoretical level as in [7]. Our results serve as tools for classifying the separating tubular families of tubular algebras as in the example [5] and for determining the automorphism group Aut(DbΛ) of the derived category of Λ.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210835
@article{bwmeta1.element.bwnjournal-article-cmv86i1p137bwm,
     author = {Dirk Kussin},
     title = {On the K-theory of tubular algebras},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {137-152},
     zbl = {0977.16004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p137bwm}
}
Kussin, Dirk. On the K-theory of tubular algebras. Colloquium Mathematicae, Tome 84/85 (2000) pp. 137-152. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p137bwm/

[000] [1] M. Barot, Representation-finite derived tubular algebras, Arch. Math. (Basel) 74 (2000), 83-94. | Zbl 0962.16010

[001] [2] M. Barot and J. A. de la Pe na, Derived tubular strongly simply connected algebras, Proc. Amer. Math. Soc. 127 (1999), 647-655. | Zbl 0940.16008

[002] [3] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. | Zbl 0635.16017

[003] [4] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Grad. Texts in Math., 97, Springer, Berlin, 1984. | Zbl 0553.10019

[004] [5] D. Kussin, Non-isomorphic derived-equivalent tubular curves and their associated tubular algebras, J. Algebra 226 (2000), 436-450. | Zbl 0948.14003

[005] [6] D. Kussin, Graduierte Faktorialität und die Parameterkurven tubularer Familien, Ph.D. thesis, Universität Paderborn, 1997.

[006] [7] H. Lenzing, A K-theoretic study of canonical algebras, in: Representation Theory of Algebras (Cocoyoc, 1994), R. Bautista, R. Mart-Villa, and J. A. de la Pe na (eds.), CMS Conf. Proc. 18, Amer. Math. Soc., Providence, RI, 1996, 433-473.

[007] [8] H. Lenzing, Representations of finite dimensional algebras and singularity theory, in: Trends in Ring Theory (Miskolc, 1996) V. Dlab et al. (eds.), CMS Conf. Proc. 22, Amer. Math. Soc., Providence, RI, 1998, 71-97. | Zbl 0895.16003

[008] [9] H. Lenzing and H. Meltzer, The automorphism group of the derived category for a weighted projective line, Comm. Algebra 28 (2000), 1685-1700. | Zbl 0965.16008

[009] [10] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in: Representations of Algebras (Ottawa 1992), V. Dlab and H. Lenzing (eds.), CMS Conf. Proc. 14, Amer. Math. Soc., Providence, RI, 1993, 313-337. | Zbl 0809.16012

[010] [11] H. Lenzing and J. A. de la Pe na, Concealed-canonical algebras and separating tubular families, Proc. London Math. Soc. 78 (1999), 513-540. | Zbl 1035.16009

[011] [12] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.

[012] [13] C. M. Ringel, The canonical algebras, in: Topics in Algebra, Banach Center Publ. 26, 1990, with an appendix by William Crawley-Boevey, 407-432.