Additive functions for quivers with relations
Lenzing, Helmut ; Reiten, Idun
Colloquium Mathematicae, Tome 79 (1999), p. 85-103 / Harvested from The Polish Digital Mathematics Library

Additive functions for quivers with relations extend the classical concept of additive functions for graphs. It is shown that the concept, recently introduced by T. Hübner in a special context, can be defined for different homological levels. The existence of such functions for level 2 resp. ∞ relates to a nonzero radical of the Tits resp. Euler form. We derive the existence of nonnegative additive functions from a family of stable tubes which stay tubes in the derived category, we investigate when this situation does appear and we study the restrictions imposed by the existence of a positive additive function.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210753
@article{bwmeta1.element.bwnjournal-article-cmv82i1p85bwm,
     author = {Helmut Lenzing and Idun Reiten},
     title = {Additive functions for quivers with relations},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {85-103},
     zbl = {0984.16015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p85bwm}
}
Lenzing, Helmut; Reiten, Idun. Additive functions for quivers with relations. Colloquium Mathematicae, Tome 79 (1999) pp. 85-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p85bwm/

[000] [1] I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463. | Zbl 0617.16017

[001] [2] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995. | Zbl 0834.16001

[002] [3] H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, 1973.

[003] [4] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297.

[004] [5] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. | Zbl 0635.16017

[005] [6] D. Happel, U. Preiser and C. M. Ringel, Binary polyhedral groups and Euclidean diagrams, Manuscripta Math. 31 (1980), 317-329. | Zbl 0436.20005

[006] [7] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). | Zbl 0849.16011

[007] [8] D. Happel, J. Rickard and A. Schofield, Piecewise hereditary algebra, Bull. London Math. Soc. 20 (1988), 23-28. | Zbl 0638.16018

[008] [9] T. Hübner, Rank additivity for quasitilted algebras of canonical type, Colloq. Math. 75 (1998), 183-193. | Zbl 0902.16012

[009] [10] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. | Zbl 0675.16013

[010] [11] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in: Representations of Algebras (Ottawa, 1992), CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 313-337. | Zbl 0809.16012

[011] [12] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representations of Algebras (Cocoyoc, 1994), CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 455-473. | Zbl 0863.16013

[012] [13] H. Lenzing and J. A. de la Pe na, Concealed-canonical algebras and separating tubular families, Proc. London. Math. Soc. 78 (1999), 513-540. | Zbl 1035.16009

[013] [14] H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161-181. | Zbl 0870.16007

[014] [15] H. Meltzer, Exceptional vector bundles, tilting sheaves and tilting complexes on weighted projective lines, Habilitationsschrift, TU Chemnitz, 1997. | Zbl 1039.16500

[015] [16] R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth strongly simply connected algebras, in: Representations of Algebras (Cocoyoc, 1994), CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 519-538. | Zbl 0866.16006

[016] [17] I. Reiten, Dynkin diagrams and the representation theory of algebras, Notices Amer. Math. Soc. 44 (1997), 546-566. | Zbl 0940.16009

[017] [18] I. Reiten and A. Skowroński, Sincere stable tubes, preprint, 1999.

[018] [19] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984