Additive functions for quivers with relations extend the classical concept of additive functions for graphs. It is shown that the concept, recently introduced by T. Hübner in a special context, can be defined for different homological levels. The existence of such functions for level 2 resp. ∞ relates to a nonzero radical of the Tits resp. Euler form. We derive the existence of nonnegative additive functions from a family of stable tubes which stay tubes in the derived category, we investigate when this situation does appear and we study the restrictions imposed by the existence of a positive additive function.
@article{bwmeta1.element.bwnjournal-article-cmv82i1p85bwm, author = {Helmut Lenzing and Idun Reiten}, title = {Additive functions for quivers with relations}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {85-103}, zbl = {0984.16015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p85bwm} }
Lenzing, Helmut; Reiten, Idun. Additive functions for quivers with relations. Colloquium Mathematicae, Tome 79 (1999) pp. 85-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p85bwm/
[000] [1] I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463. | Zbl 0617.16017
[001] [2] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995. | Zbl 0834.16001
[002] [3] H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, 1973.
[003] [4] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297.
[004] [5] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. | Zbl 0635.16017
[005] [6] D. Happel, U. Preiser and C. M. Ringel, Binary polyhedral groups and Euclidean diagrams, Manuscripta Math. 31 (1980), 317-329. | Zbl 0436.20005
[006] [7] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). | Zbl 0849.16011
[007] [8] D. Happel, J. Rickard and A. Schofield, Piecewise hereditary algebra, Bull. London Math. Soc. 20 (1988), 23-28. | Zbl 0638.16018
[008] [9] T. Hübner, Rank additivity for quasitilted algebras of canonical type, Colloq. Math. 75 (1998), 183-193. | Zbl 0902.16012
[009] [10] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. | Zbl 0675.16013
[010] [11] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in: Representations of Algebras (Ottawa, 1992), CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 313-337. | Zbl 0809.16012
[011] [12] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representations of Algebras (Cocoyoc, 1994), CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 455-473. | Zbl 0863.16013
[012] [13] H. Lenzing and J. A. de la Pe na, Concealed-canonical algebras and separating tubular families, Proc. London. Math. Soc. 78 (1999), 513-540. | Zbl 1035.16009
[013] [14] H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161-181. | Zbl 0870.16007
[014] [15] H. Meltzer, Exceptional vector bundles, tilting sheaves and tilting complexes on weighted projective lines, Habilitationsschrift, TU Chemnitz, 1997. | Zbl 1039.16500
[015] [16] R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth strongly simply connected algebras, in: Representations of Algebras (Cocoyoc, 1994), CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 519-538. | Zbl 0866.16006
[016] [17] I. Reiten, Dynkin diagrams and the representation theory of algebras, Notices Amer. Math. Soc. 44 (1997), 546-566. | Zbl 0940.16009
[017] [18] I. Reiten and A. Skowroński, Sincere stable tubes, preprint, 1999.
[018] [19] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984