Tame three-partite subamalgams of tiled orders of polynomial growth
Simson, Daniel
Colloquium Mathematicae, Tome 79 (1999), p. 237-262 / Harvested from The Polish Digital Mathematics Library

Assume that K is an algebraically closed field. Let D be a complete discrete valuation domain with a unique maximal ideal p and residue field D/p ≌ K. We also assume that D is an algebra over the field K . We study subamalgam D-suborders Λ (1.2) of tiled D-orders Λ (1.1). A simple criterion for a tame lattice type subamalgam D-order Λ to be of polynomial growth is given in Theorem 1.5. Tame lattice type subamalgam D-orders Λ of non-polynomial growth are completely described in Theorem 6.2 and Corollary 6.3.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210737
@article{bwmeta1.element.bwnjournal-article-cmv81i2p237bwm,
     author = {Daniel Simson},
     title = {Tame three-partite subamalgams of tiled orders of polynomial growth},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {237-262},
     zbl = {0937.16020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p237bwm}
}
Simson, Daniel. Tame three-partite subamalgams of tiled orders of polynomial growth. Colloquium Mathematicae, Tome 79 (1999) pp. 237-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p237bwm/

[000] [1] D. M. Arnold and M. Dugas, Block rigid almost completely decomposable groups and lattices over multiple pullback rings, J. Pure Appl. Algebra 87 (1993), 105-121. | Zbl 0818.20065

[001] [2] C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, Wiley Classics Library Edition, New York, 1990.

[002] [3] P. Dowbor and S. Kasjan, Galois covering technique and tame non-simply connected posets of polynomial growth, J. Pure Appl. Algebra 1999, in press. | Zbl 0998.16010

[003] [4] J. A. Drozd and M. G. Greuel, Tame-wild dichotomy for Cohen-Macaulay modules, Math. Ann. 294 (1992), 387-394. | Zbl 0760.16005

[004] [5] Y. A. Drozd, Cohen-Macaulay modules and vector bundles, in: Interactions between Ring Theory and Representations of Algebras (Murcia, 1998), Lecture Notes in Pure and Appl. Math., Marcel Dekker, 1999, to appear.

[005] [6] P. Gabriel and A. V. Roiter, Representations of Finite Dimensional Algebras, Algebra VIII, Encyclopedia Math. Sci. 73, Springer, 1992.

[006] [7] E. L. Green and I. Reiner, Integral representations and diagrams, Michigan Math. J. 25 (1978), 53-84. | Zbl 0365.16015

[007] [8] S. Kasjan, Adjustment functors and tame representation type, Comm. Algebra 22 (1994), 5587-5597. | Zbl 0823.16010

[008] [9] S. Kasjan, Minimal bipartite algebras of infinite prinjective type with prin-preprojective component, Colloq. Math. 76 (1998), 295-317. | Zbl 0912.16007

[009] [10] S. Kasjan, A criterion for polynomial growth of ˜n-free two-peak posets of tame prinjective type, preprint, Toruń, 1998.

[010] [11] S. Kasjan and D. Simson, Tame prinjective type and Tits form of two-peak posets I, J. Pure Appl. Algebra 106 (1996), 307-330. | Zbl 0856.16007

[011] [12] S. Kasjan and D. Simson, Tame prinjective type and Tits form of two-peak posets II, J. Algebra 187 (1997), 71-96. | Zbl 0944.16013

[012] [13] S. Kasjan and D. Simson, A subbimodule reduction, a peak reduction functor and tame prinjective type, Bull. Polish Acad. Sci. Math. 45 (1997), 89-107. | Zbl 0959.16012

[013] [14] L. A. Nazarova and V. A. Roiter, Representations of completed posets, Comment. Math. Helv. 63 (1988), 498-526. | Zbl 0671.18002

[014] [15] J. A. de la Pe na and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753. | Zbl 0789.16010

[015] [16] C. M. Ringel and K. W. Roggenkamp, Diagrammatic methods in the representation theory of orders, J. Algebra 60 (1979), 11-42. | Zbl 0438.16021

[016] [17] D. Simson, A splitting theorem for multipeak path algebras, Fund. Math. 138 (1991), 113-137. | Zbl 0780.16010

[017] [18] D. Simson, Right peak algebras of two-separate stratified posets, their Galois coverings and socle projective modules, Comm. Algebra 20 (1992), 3541-3591. | Zbl 0791.16011

[018] [19] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, New York, 1992. | Zbl 0818.16009

[019] [20] D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 77-103. | Zbl 0815.16006

[020] [21] D. Simson, On representation types of module subcategories and orders, Bull. Polish Acad. Sci. Math. 41 (1993), 77-93. | Zbl 0805.16011

[021] [22] D. Simson, A reduction functor, tameness and Tits form for a class of orders, J. Algebra 174 (1995), 430-452. | Zbl 0831.16011

[022] [23] D. Simson, Triangles of modules and non-polynomial growth, C. R. Acad. Sci. Paris Sér. I 321 (1995), 33-38. | Zbl 0842.16010

[023] [24] D. Simson, Representation embedding problems, categories of extensions and prinjective modules, in: Representation Theory of Algebras (Cocoyoc, 1994), CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 601-639. | Zbl 0929.16014

[024] [25] D. Simson, Socle projective representations of partially ordered sets and Tits quadratic forms with application to lattices over orders, in: Abelian Groups and Modules (Colorado Springs, 1995), Lecture Notes in Pure and Appl. Math. 182, Marcel Dekker, 1996, 73-111. | Zbl 0869.16008

[025] [26] D. Simson, Prinjective modules, propartite modules, representations of bocses and lattices over orders, J. Math. Soc. Japan 49 (1997), 31-68. | Zbl 0937.16019

[026] [27] D. Simson, Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders, in: Trends in the Representation Theory of Finite Dimensional Algebras (Seattle, 1997), Contemp. Math. 229, Amer. Math. Soc., 1998, 307-342. | Zbl 0921.16007

[027] [28] D. Simson, Three-partite subamalgams of tiled orders of finite lattice type, J. Pure Appl. Algebra 138 (1999), 151-184. | Zbl 0928.16014

[028] [29] D. Simson, A reduced Tits quadratic form and tameness of three-partite subamalgams of tiled orders, Trans. Amer. Math. Soc., in press. | Zbl 0953.16016

[029] [30] D. Simson, Cohen-Macaulay modules over classical orders, in: Interactions between Ring Theory and Representations of Algebras (Murcia, 1998), Lecture Notes in Pure and Appl. Math., Marcel Dekker, 1999, to appear.

[030] [31] A. Skowroński, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499-516. | Zbl 0627.16007

[031] [32] A. Skowroński, Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci. Math. 42 (1994), 173-183. | Zbl 0865.16011

[032] [33] Y. Yoshino, Brauer-Thrall type theorem for maximal Cohen-Macaulay modules, J. Math. Soc. Japan 39 (1987), 719-739. | Zbl 0615.13008

[033] [34] Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc. Lecture Note Ser. 146, Cambridge Univ. Press, 1990. | Zbl 0745.13003

[034] [35] A. G. Zavadskij and V. V. Kirichenko, Torsion-free modules over prime rings, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 57 (1976), 100-116 (in Russian).

[035] [36] A. G. Zavadskij and V. V. Kirichenko, Semimaximal rings of finite type, Mat. Sb. 103 (1977), 323-345 (in Russian). | Zbl 0396.16002