Measurability of functions with approximately continuous vertical sections and measurable horizontal sections
Laczkovich, M. ; Miller, Arnold
Colloquium Mathematicae, Tome 70 (1996), p. 299-308 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210344
@article{bwmeta1.element.bwnjournal-article-cmv69i2p299bwm,
     author = {M. Laczkovich and Arnold Miller},
     title = {Measurability of functions with approximately continuous vertical sections and measurable horizontal sections},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {299-308},
     zbl = {0852.28004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p299bwm}
}
Laczkovich, M.; Miller, Arnold. Measurability of functions with approximately continuous vertical sections and measurable horizontal sections. Colloquium Mathematicae, Tome 70 (1996) pp. 299-308. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv69i2p299bwm/

[000] [1] T. Bartoszyński and S. Shelah, Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), 93-110. | Zbl 0764.03018

[001] [2] J. Bourgain, D. H. Fremlin and M. Talagrand, Pointwise compact sets of Baire measurable functions, Amer. J. Math. 100 (1978), 845-886. | Zbl 0413.54016

[002] [3] A. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, 1978. | Zbl 0382.26002

[003] [4] T. Carlson, Extending Lebesgue measure by infinitely many sets, Pacific J. Math. 115 (1984), 33-45. | Zbl 0582.28004

[004] [5] R. O. Davies, Separate approximate continuity implies measurability, Proc. Cambridge Philos. Soc. 73 (1973), 461-465. | Zbl 0254.26011

[005] [6] R. O. Davies and J. Dravecký, On the measurability of functions of two variables, Mat. Časopis 23 (1973), 285-289. | Zbl 0262.28004

[006] [7] A. Denjoy, Sur les fonctions dérivées sommables, Bull. Soc. Math. France 43 (1916), 161-248. | Zbl 45.0435.03

[007] [8] C. Freiling, Axioms of symmetry: throwing darts at the real number line, J. Symbolic Logic 51 (1986), 190-200. | Zbl 0619.03035

[008] [9] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-506. | Zbl 0101.15502

[009] [10] Z. Grande, La mesurabilité des fonctions de deux variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 657-661. | Zbl 0287.28003

[010] [11] T. Jech, Set Theory, Academic Press, 1978.

[011] [12] P. Komjáth, Some remarks on second category sets, Colloq. Math. 66 (1993), 57-62. | Zbl 0827.03031

[012] [13] K. Kunen, Random and Cohen reals, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 887-911.

[013] [14] K. Kuratowski, Topology, Vol. 1, Academic Press, 1966.

[014] [15] M. Laczkovich and G. Petruska, Sectionwise properties and measurability of functions of two variables, Acta Math. Acad. Sci. Hungar. 40 (1982), 169-178. | Zbl 0519.26007

[015] [16] H. Lebesgue, Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278-287.

[016] [17] J. Lukeš, J. Malý and L. Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math. 1189, Springer, 1985. | Zbl 0607.31001

[017] [18] W. Rudin, Lebesgue's first theorem, in: Mathematical Analysis and Applications, Part B, Adv. Math. Suppl. Stud. 7b, Academic Press, 1981, 741-747.

[018] [19] S. Saks, Theory of the Integral, Dover, 1964.

[019] [20] W. Sierpiński, Sur les rapports entre l’existence des intégrales 01f(x,y)dx, 01f(x,y)dy, et 01dx01f(x,y)dy, Fund. Math. 1 (1920), 142-147. | Zbl 47.0245.01

[020] [21] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 1-56. | Zbl 0207.00905

[021] [22] F. Tall, The density topology, Pacific J. Math. 62 (1976), 275-284. | Zbl 0305.54039

[022] [23] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54. | Zbl 0038.20602