Existence and nonexistence of solutions for a model of gravitational interaction of particles, II
Biler, Piotr ; Hilhorst, Danielle ; Nadzieja, Tadeusz
Colloquium Mathematicae, Tome 67 (1994), p. 297-308 / Harvested from The Polish Digital Mathematics Library

We study the existence and nonexistence in the large of radial solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles. The blow-up of solutions defined in the n-dimensional ball with large initial data is connected with the nonexistence of radial stationary solutions with a large mass.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:210282
@article{bwmeta1.element.bwnjournal-article-cmv67i2p297bwm,
     author = {Piotr Biler and Danielle Hilhorst and Tadeusz Nadzieja},
     title = {Existence and nonexistence of solutions for a model of gravitational interaction of particles, II},
     journal = {Colloquium Mathematicae},
     volume = {67},
     year = {1994},
     pages = {297-308},
     zbl = {0832.35015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv67i2p297bwm}
}
Biler, Piotr; Hilhorst, Danielle; Nadzieja, Tadeusz. Existence and nonexistence of solutions for a model of gravitational interaction of particles, II. Colloquium Mathematicae, Tome 67 (1994) pp. 297-308. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv67i2p297bwm/

[000] [1] M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489-539.

[001] [2] P. Biler, Blowup in nonlinear parabolic equations, Colloq. Math. 58 (1989), 85-110. | Zbl 0702.35018

[002] [3] P. Biler, Blow-up in the porous medium equation, in: Recent Advances in Nonlinear Elliptic and Parabolic Problems, Proc. Internat. Conf. Nancy, 1988, P. Bénilan, M. Chipot, L. C. Evans and M. Pierre (eds.), Pitman Res. Notes in Math. 208, Longman, Harlow, 1989, 28-38.

[003] [4] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal. 19 (1992), 1121-1136. | Zbl 0781.35025

[004] [5] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, Colloq. Math. 66 (1994), 319-334. | Zbl 0817.35041

[005] [6] E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (1992), 501-525. | Zbl 0745.76001

[006] [7] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. | Zbl 0144.34903

[007] [8] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319. | Zbl 0585.35051

[008] [9] D. Hilhorst, A nonlinear evolution problem arising in the physics of ionized gases, SIAM J. Math. Anal. 13 (1982), 16-39. | Zbl 0488.35040

[009] [10] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1973), 241-269. | Zbl 0266.34021

[010] [11] A. Krzywicki and T. Nadzieja, Some results concerning the Poisson-Boltzmann equation, Zastos. Mat. 21 (1991), 265-272. | Zbl 0756.35029

[011] [12] A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. | Zbl 0754.35142

[012] [13] A. Krzywicki and T. Nadzieja, A note on the Poisson-Boltzmann equation, Zastos. Mat. 21 (1993), 591-595. | Zbl 0780.35033

[013] [14] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1988.

[014] [15] K. Nagasaki and T. Suzuki, Radial and nonradial solutions for the nonlinear eigenvalue problem Δu+λeu=0 on annuli in 2, J. Differential Equations 87 (1990), 144-168. | Zbl 0717.35030

[015] [16] K. Nagasaki and T. Suzuki, Radial solutions for Δu+λeu=0 on annuli in higher dimensions, ibid. 100 (1992), 137-161.

[016] [17] F. Pacard, Radial and nonradial solutions of -Δu=λf(u) on an annulus of n, n ≥ 3, ibid. 101 (1993), 103-138. | Zbl 0799.35089

[017] [18] T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. Henri Poincaré Anal. Non Linéaire 9 (1992), 367-398. | Zbl 0785.35045

[018] [19] G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992), 355-391. | Zbl 0774.76069

[019] [20] G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Analyse Math. 59 (1992), 251-272. | Zbl 0806.35134