Partially additive states on orthomodular posets
Tkadlec, Josef
Colloquium Mathematicae, Tome 62 (1991), p. 7-14 / Harvested from The Polish Digital Mathematics Library

We fix a Boolean subalgebra B of an orthomodular poset P and study the mappings s:P → [0,1] which respect the ordering and the orthocomplementation in P and which are additive on B. We call such functions B-states on P. We first show that every P possesses "enough" two-valued B-states. This improves the main result in [13], where B is the centre of P. Moreover, it allows us to construct a closure-space representation of orthomodular lattices. We do this in the third section. This result may also be viewed as a generalization of [6]. Then we prove an extension theorem for B-states giving, as a by-product, a topological proof of a classical Boolean result.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:210102
@article{bwmeta1.element.bwnjournal-article-cmv62i1p7bwm,
     author = {Josef Tkadlec},
     title = {Partially additive states on orthomodular posets},
     journal = {Colloquium Mathematicae},
     volume = {62},
     year = {1991},
     pages = {7-14},
     zbl = {0784.03037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i1p7bwm}
}
Tkadlec, Josef. Partially additive states on orthomodular posets. Colloquium Mathematicae, Tome 62 (1991) pp. 7-14. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i1p7bwm/

[000] [1] J. Binder and P. Pták, A representation of orthomodular lattices, Acta Univ. Carolin.--Math. Phys. 31 (1990), 21-26. | Zbl 0778.06010

[001] [2] E. Čech, Topological Spaces, Publ. House of the Czechoslovak Academy of Sciences, Prague, and Interscience, London 1966.

[002] [3] R. J. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory Ser. A 10 (1971), 119-132. | Zbl 0219.06007

[003] [4] S. P. Gudder, Stochastic Methods in Quantum Mechanics, North-Holland, New York 1979. | Zbl 0439.46047

[004] [5] A. Horn and A. Tarski, Measures in Boolean algebras, Trans. Amer. Math. Soc. 64 (1948), 467-497. | Zbl 0035.03001

[005] [6] L. Iturrioz, A representation theory for orthomodular lattices by means of closure spaces, Acta Math. Hungar. 47 (1986), 145-151. | Zbl 0608.06008

[006] [7] G. Kalmbach, Orthomodular Lattices, Academic Press, London 1983.

[007] [8] M. J. Mączyński, Probability measures on a Boolean algebra, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 849-852. | Zbl 0249.60002

[008] [9] R. Mayet, Une dualité pour les ensembles ordonnés orthocomplémentés, C. R. Acad. Sci. Paris Sér. I 294 (1982), 63-65. | Zbl 0484.06002

[009] [10] R. Mayet, Varieties of orthomodular lattices related to states, Algebra Universalis 20 (1985), 368-396. | Zbl 0581.06006

[010] [11] P. Pták, Extensions of states on logics, Bull. Polish Acad. Sci. Math. 33 (1985), 493-497. | Zbl 0589.03040

[011] [12] P. Pták, Weak dispersion-free states and the hidden variables hypothesis, J. Math. Phys. 24 (1983), 839-840. | Zbl 0508.60006

[012] [13] N. Zierler and M. Schlessinger, Boolean embeddings of orthomodular sets and quantum logic, Duke Math. J. 32 (1965), 251-262. | Zbl 0171.25403