Metric Entropy of Homogeneous Spaces
Szarek, Stanisław
Banach Center Publications, Tome 43 (1998), p. 395-410 / Harvested from The Polish Digital Mathematics Library

For a precompact subset K of a metric space and ε > 0, the covering number N(K,ε) is defined as the smallest number of balls of radius ε whose union covers K. Knowledge of the metric entropy, i.e., the asymptotic behaviour of covering numbers for (families of) metric spaces is important in many areas of mathematics (geometry, functional analysis, probability, coding theory, to name a few). In this paper we give asymptotically correct estimates for covering numbers for a large class of homogeneous spaces of unitary (or orthogonal) groups with respect to some natural metrics, most notably the one induced by the operator norm. This generalizes the author's earlier results concerning covering numbers of Grassmann manifolds; the generalization is motivated by applications to noncommutative probability and operator algebras. The argument uses a characterization of geodesics in U(n) (or SO(m)) for a class of non-Riemannian Finsler metric structures.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208860
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p395bwm,
     author = {Szarek, Stanis\l aw},
     title = {Metric Entropy of Homogeneous Spaces},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {395-410},
     zbl = {0927.46047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p395bwm}
}
Szarek, Stanisław. Metric Entropy of Homogeneous Spaces. Banach Center Publications, Tome 43 (1998) pp. 395-410. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p395bwm/

[000] [1] K. Ball, E. A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), no. 3, 463-482. | Zbl 0803.47037

[001] [2] R. Bhatia, Perturbation bounds for matrix eigenvalues, Pitman Research Notes 162, Longman Scientific & Technical, Harlow 1987. | Zbl 0696.15013

[002] [3] H. Busemann, Metric methods in Finsler spaces and the foundations of geometry, Annals Math. Studies 8, Princeton University Press, Princeton, 1942. | Zbl 0063.00672

[003] [4] B. Carl and I. Stephani, Entropy, Compactness and Approximation of Operators, Cambridge University Press, Cambridge, 1990.

[004] [5] S. Chevet, Séries de variables aléatoires gaussiennes à valeurs dans EεF, Séminaire sur la géométrie des espaces de Banach 1977-78, Ecole Polytechnique, Palaiseau.

[005] [6] K. Dykema, personal communication.

[006] [7] L. Ge, Prime factors, Proc. Natl. Acad. Sci. USA 93 (1996), 12762-12763. | Zbl 0863.46040

[007] [8] L. Ge, Applications of free entropy to finite von Neumann algebras, Amer. J. Math. 119 (1997), 467-485 | Zbl 0871.46031

[008] [9] E. D. Gluskin, The diameter of the Minkowski compactum is roughly equal to n, Functional Anal. Appl. 15 (1981), 72-73.

[009] [10] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Nauka, Moscow 1965. English transl.: AMS 1969. | Zbl 0181.13504

[010] [11] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York 1978. | Zbl 0451.53038

[011] [12] D. Herrero and S. J. Szarek, How well can an n × n matrix be approximated by reducible ones?, Duke Math. J. 53 (1986), 233-248. | Zbl 0603.47026

[012] [13] A. Pajor, Metric entropy of the Grassmann manifold, Proceedings of the MSRI Convex Geometry Semester (Spring 1996), to appear. | Zbl 0942.46013

[013] [14] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, Cambridge 1989. | Zbl 0698.46008

[014] [15] J. Saint-Raymond, Sur le volume des idéaux d'opérateurs classiques, Studia Math. 80 (1984), 63-75.

[015] [16] L. A. Santaló, Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Port. Math. 8(1949), 155-161.

[016] [17] S. J. Szarek, Nets of Grassmann manifolds and orthogonal groups, Proceedings of Banach Space Workshop, University of Iowa Press 1982, 169-185.

[017] [18] S. J. Szarek, The finite dimensional basis problem with an appendix on nets of Grassmann manifolds, Acta Math. 151 (1983), 153-179. | Zbl 0554.46004

[018] [19] S. J. Szarek, An exotic quasidiagonal operator, J. Funct. Anal. 89 (1990), 274-290. | Zbl 0697.47015

[019] [20] S. J. Szarek, Spaces with large distance to ln and random matrices, Amer. J. Math. 112 (1990), 899-942. | Zbl 0762.46003

[020] [21] S. J. Szarek, Metric entropy of homogeneous spaces and Finsler geometry of classical Lie groups, MSRI preprint 1997-010.

[021] [22] S. J. Szarek, Geodesics for Invariant Finsler Geometries on Classical Lie Groups, to appear.

[022] [23] N. Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Longman Scientific & Technical, Harlow 1989.

[023] [24] V. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Springer Verlag, New York 1984. | Zbl 0955.22500

[024] [25] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. III. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1996), 172-199. | Zbl 0856.60012

[025] [26] D. Voiculescu, personal communication.