Post-Newtonian approximations and equations of motion of general relativity
Schäfer, Gerhard
Banach Center Publications, Tome 38 (1997), p. 43-53 / Harvested from The Polish Digital Mathematics Library

A post-Newtonian approximation scheme for general relativity is defined using the Arnowitt-Deser-Misner formalism. The scheme is applied to perfect fluids and point-mass systems. The two-body point-mass Hamiltonian is given explicitly up to the post2.5-Newtonian order.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252227
@article{bwmeta1.element.bwnjournal-article-bcpv41z2p43bwm,
     author = {Sch\"afer, Gerhard},
     title = {Post-Newtonian approximations and equations of motion of general relativity},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {43-53},
     zbl = {0891.53065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p43bwm}
}
Schäfer, Gerhard. Post-Newtonian approximations and equations of motion of general relativity. Banach Center Publications, Tome 38 (1997) pp. 43-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p43bwm/

[000] [1] V. I. Arnold, Sur la géometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluids parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), 319-361. | Zbl 0148.45301

[001] [2] R. Arnowitt, S. Deser, and C. M. Misner, Gravitational-electromagnetic coupling and the classical self-energy problem, Phys. Rev. 120 (1960), 313-320. | Zbl 0096.22005

[002] [3] R. Arnowitt, S. Deser, and C. M. Misner, The dynamics of general relativity, in: Gravitation: An Introduction to Current Research, L. Witten (ed.), Wiley, New York 1962, 227-265.

[003] [4] L. Blanchet, Energy losses by gravitational radiation in inspiralling compact binaries to five halves post-Newtonian order, Phys. Rev. D 54 (1996), 1417-1438.

[004] [5] L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G. Wiseman, Gravitational-radiation damping of compact systems to second post-Newtonian order, Phys. Rev. Lett. 74 (1995), 3515-3518.

[005] [6] L. Blanchet and G. Schäfer, Higher-order gravitational radiation losses in binary systems, Mon. Not. R. astr. Soc. 239 (1989), 845-867; and Erratum: Mon. Not. R. astr. Soc. 242 (1990), 704. | Zbl 0671.70009

[006] [7] L. Blanchet and G. Schäfer, Gravitational wave tails and binary star systems, Class. Quantum Grav. 10 (1993), 2699-2721.

[007] [8] T. Damour, Gravitational radiation and the motion of compact objects, in: Gravitational Radiation, N. Deruelle and T. Piran (eds.), North-Holland Publishing, Amsterdam 1983, 59-144.

[008] [9] T. Damour, The problem of motion in Newtonian and Einsteinian gravity, in: 300 Years of Gravitation, S. W. Hawking and W. Israel (eds.), Cambridge University Press, Cambridge 1987, 128-198. | Zbl 0966.83509

[009] [10] T. Damour, L. P. Grishchuk, S. M. Kopejkin, and G. Schäfer, Higher-order relativistic dynamics of binary systems, in: Proc. 5th Marcel Grossmann Meeting on General Relativity, The University of Western Australia 1988, D. G. Blair and M. J. Buckingham (eds.), World Scientific, Singapore 1989, 451-459.

[010] [11] T. Damour and G. Schäfer, Lagrangians for n point masses at the second post- Newtonian approximation to general relativity, General Relativity and Gravitation 17 (1985), 879-905. | Zbl 0568.70014

[011] [12] T. Damour and G. Schäfer, Higher-order relativistic periastron advances and binary pulsars, Nuovo Cimento B 101 (1988), 127-176.

[012] [13] T. Damour and G. Schäfer, Redefinition of position variables and the reduction of higher order lagrangians, Journ. Math. Phys. 32 (1991), 127-134. | Zbl 0775.70025

[013] [14] B. S. DeWitt, Quantum theory of gravity. I. The canonical theory, Phys. Rev. 160 (1967), 1113-1148. | Zbl 0158.46504

[014] [15] J. Ehlers, Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie, in: Grundlagenprobleme der modernen Physik, J. Nitsch, J. Pfarr, and E.-W. Stachow (eds.), Bibliographisches Institut, Mannheim 1981, 65-84.

[015] [16] L. P. Grishchuk and S. M. Kopejkin, Equations of motion for isolated bodies with relativistic corrections including the radiation reaction force, in: Relativity in Celestial Mechanics and Astrometry, J. Kovalevsky and V. A. Brumberg (eds.), Reidel, Dordrecht 1986, 19-34.

[016] [17] D. D. Holm, Hamiltonian formalism for general-relativistic adiabatic fluids, Physica 17D (1985), 1-36.

[017] [18] B. R. Iyer and C. M. Will, Post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies, Phys. Rev. D 52 (1995), 6882-6893.

[018] [19] P. Jaranowski and G. Schäfer, Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems, Phys. Rev. D (1996), submitted.

[019] [20] W. Junker, G. Schäfer, Binary systems: higher order gravitational radiation damping and wave emission, Mon. Not. R. astr. Soc. 254 (1992), 146-164.

[020] [21] S. M. Kopejkin, General-relativistic equations of binary motion for extended bodies, with conservative corrections and radiation damping, Sov. Astron. 29 (1985), 516-524.

[021] [22] T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Coordinate condition and higher order gravitational potential in canonical formalism, Progress of Theoretical Physics 51 (1974), 1598-1612.

[022] [23] P. C. Peters, Gravitational radiation and the motion of two point masses, Phys. Rev. 136 (1964), B1224-B1232.

[023] [24] T. Regge and T. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals of Physics 88 (1974), 286-318. | Zbl 0328.70016

[024] [25] G. Schäfer, The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM, Ann. Phys. (N.Y.) 161 (1985), 81-100.

[025] [26] G. Schäfer, Higher-order post-Newtonian hydrodynamics, in: Proc. 5th Marcel Grossmann Meeting on General Relativity, The University of Western Australia 1988, D. G. Blair and M. J. Buckingham (eds.) World Scientific, Singapore, 1986, 467-470.

[026] [27] G. Schäfer, Reduced Hamiltonian formalism for general-relativistic adiabatic fluids and applications, Astron. Nachrichten 311 (1990), 213-217. | Zbl 0734.76095

[027] [28] G. Schäfer, The general relativistic two-body problem. Theory and experiment, in: Symposia Gaussiana, Proc. 2nd Gauss Symposium, Conf. A: Mathematical and Theoretical Physics, Munich 1993, M. Behara, R. Fritsch, and R. G. Lintz (eds.), Walter de Gruyter, Berlin 1995, 667-679. | Zbl 0851.70008

[028] [29] G. Schäfer and N. Wex, Second post-Newtonian motion of compact binaries, Phys. Lett. A 174 (1993), 196-205; and Erratum: Phys. Lett. A 177 (1993), 461.

[029] [30] K. Sundermeyer, Constraint Dynamics, Lecture Notes in Physics 169, Springer-Verlag, Berlin 1982.

[030] [31] K. S. Thorne, Multipole expansion of gravitational radiation, Rev. Mod. Phys. 52 (1980), 299-339.

[031] [32] N. Wex and R. Rieth, The solution of the second post-Newtonian two-body problem, in: Symposia Gaussiana, Proc. 2nd Gauss Symposium, Conf. A: Mathematical and Theoretical Physics, Munich 1993, M. Behara, R. Fritsch, and R. G. Lintz (eds.), Walter de Gruyter, Berlin 1995, 681-693. | Zbl 0851.70009