Non-Riemannian gravitational interactions
Tucker, Robin ; Wang, Charles
Banach Center Publications, Tome 38 (1997), p. 263-271 / Harvested from The Polish Digital Mathematics Library

Recent developments in theories of non-Riemannian gravitational interactions are outlined. The question of the motion of a fluid in the presence of torsion and metric gradient fields is approached in terms of the divergence of the Einstein tensor associated with a general connection. In the absence of matter the variational equations associated with a broad class of actions involving non-Riemannian fields give rise to an Einstein-Proca system associated with the standard Levi-Civita connection.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252244
@article{bwmeta1.element.bwnjournal-article-bcpv41z2p263bwm,
     author = {Tucker, Robin and Wang, Charles},
     title = {Non-Riemannian gravitational interactions},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {263-271},
     zbl = {0891.53069},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p263bwm}
}
Tucker, Robin; Wang, Charles. Non-Riemannian gravitational interactions. Banach Center Publications, Tome 38 (1997) pp. 263-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p263bwm/

[000] [1] H. Weyl, Geometrie und Physik, Naturwissenschaften 19 (1931) 49.

[001] [2] J. Scherk, J. H. Schwarz, Phys. Letts 52B (1974) 347.

[002] [3] T. Dereli, R. W. Tucker, Lett. Class. Q. Grav. 12 (1995) L31.

[003] [4] T. Dereli, M. Önder, R. W. Tucker, Lett. Class. Q. Grav. 12 (1995) L25.

[004] [5] T. Dereli, R. W. Tucker, Class. Q. Grav. 11 (1994) 2575.

[005] [6] R. W. Tucker, C. Wang, Class. Quan. Grav. 12 (1995) 2587.

[006] [7] F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne'eman, Physics Reports, 258 (1995) 1.

[007] [8] F. W. Hehl, E. Lord, L. L. Smalley, Gen. Rel. Grav. 13 (1981) 1037.

[008] [9] P. Baekler, F. W. Hehl, E. W. Mielke, ``Non-Metricity and Torsion'' in Proc. of 4th Marcel Grossman Meeting on General Relativity, Part A, Ed. R Ruffini (North Holland 1986) 277.

[009] [10] V. N. Ponomariev, Y. Obukhov, Gen. Rel. Grav. 14 (1982) 309.

[010] [11] J. D. McCrea, Clas. Q. Grav. 9 (1992) 553.

[011] [12] R. Tresguerres, Z. für Physik C 65 (1995) 347.

[012] [13] R. Tresguerres, Phys.Lett. A200 (1995) 405.

[013] [14] Y. Obukhov, E. J. Vlachynsky, W. Esser, R. Tresguerres, F. W. Hehl, An exact solution of the metric-affine gauge theory with dilation, shear and spin charges, gr-qc 9604027 (1996). | Zbl 0972.83584

[014] [15] E. J. Vlachynsky, R. Tresguerres, Y. Obukhov, F. W. Hehl, An axially symmetric solution of metric-affine gravity, gr-qc 9604035 (1996). | Zbl 0875.83063

[015] [16] P. Teyssandier, R. W. Tucker, Class. Quantum Grav 13 (1996) 145.

[016] [17] T. Dereli, M. Önder, J. Schray, R. W. Tucker, C. Wang, Non-Riemannian Gravity and the Einstein-Proca System, gr-qc 9604039 (1996). | Zbl 0865.53084

[017] [18] Y. Obhukov, R. Tresguerres, Phys. Lett. A184 (1993) 17.

[018] [19] Y. Ne'eman, F. W. Hehl, Test Matter in a Spacetime with Nonmetricity, gr-qc 9604047 (1996).

[019] [20] H. Kleinert, A. Pelster, Lagrangian Mechanics in Spaces with Curvature and Torsion, gr-qc 9605028 (1996).