Recent developments in theories of non-Riemannian gravitational interactions are outlined. The question of the motion of a fluid in the presence of torsion and metric gradient fields is approached in terms of the divergence of the Einstein tensor associated with a general connection. In the absence of matter the variational equations associated with a broad class of actions involving non-Riemannian fields give rise to an Einstein-Proca system associated with the standard Levi-Civita connection.
@article{bwmeta1.element.bwnjournal-article-bcpv41z2p263bwm, author = {Tucker, Robin and Wang, Charles}, title = {Non-Riemannian gravitational interactions}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {263-271}, zbl = {0891.53069}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p263bwm} }
Tucker, Robin; Wang, Charles. Non-Riemannian gravitational interactions. Banach Center Publications, Tome 38 (1997) pp. 263-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p263bwm/
[000] [1] H. Weyl, Geometrie und Physik, Naturwissenschaften 19 (1931) 49.
[001] [2] J. Scherk, J. H. Schwarz, Phys. Letts 52B (1974) 347.
[002] [3] T. Dereli, R. W. Tucker, Lett. Class. Q. Grav. 12 (1995) L31.
[003] [4] T. Dereli, M. Önder, R. W. Tucker, Lett. Class. Q. Grav. 12 (1995) L25.
[004] [5] T. Dereli, R. W. Tucker, Class. Q. Grav. 11 (1994) 2575.
[005] [6] R. W. Tucker, C. Wang, Class. Quan. Grav. 12 (1995) 2587.
[006] [7] F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne'eman, Physics Reports, 258 (1995) 1.
[007] [8] F. W. Hehl, E. Lord, L. L. Smalley, Gen. Rel. Grav. 13 (1981) 1037.
[008] [9] P. Baekler, F. W. Hehl, E. W. Mielke, ``Non-Metricity and Torsion'' in Proc. of 4th Marcel Grossman Meeting on General Relativity, Part A, Ed. R Ruffini (North Holland 1986) 277.
[009] [10] V. N. Ponomariev, Y. Obukhov, Gen. Rel. Grav. 14 (1982) 309.
[010] [11] J. D. McCrea, Clas. Q. Grav. 9 (1992) 553.
[011] [12] R. Tresguerres, Z. für Physik C 65 (1995) 347.
[012] [13] R. Tresguerres, Phys.Lett. A200 (1995) 405.
[013] [14] Y. Obukhov, E. J. Vlachynsky, W. Esser, R. Tresguerres, F. W. Hehl, An exact solution of the metric-affine gauge theory with dilation, shear and spin charges, gr-qc 9604027 (1996). | Zbl 0972.83584
[014] [15] E. J. Vlachynsky, R. Tresguerres, Y. Obukhov, F. W. Hehl, An axially symmetric solution of metric-affine gravity, gr-qc 9604035 (1996). | Zbl 0875.83063
[015] [16] P. Teyssandier, R. W. Tucker, Class. Quantum Grav 13 (1996) 145.
[016] [17] T. Dereli, M. Önder, J. Schray, R. W. Tucker, C. Wang, Non-Riemannian Gravity and the Einstein-Proca System, gr-qc 9604039 (1996). | Zbl 0865.53084
[017] [18] Y. Obhukov, R. Tresguerres, Phys. Lett. A184 (1993) 17.
[018] [19] Y. Ne'eman, F. W. Hehl, Test Matter in a Spacetime with Nonmetricity, gr-qc 9604047 (1996).
[019] [20] H. Kleinert, A. Pelster, Lagrangian Mechanics in Spaces with Curvature and Torsion, gr-qc 9605028 (1996).