Gravitational waves from coalescing binaries: a hierarchical signal detection strategy
Mohanty, S. ; Dhurandhar, S.
Banach Center Publications, Tome 38 (1997), p. 221-233 / Harvested from The Polish Digital Mathematics Library

The detection of gravitational waves from coalescing compact binaries would be a computationally intensive process if a single bank of template waveforms (i.e., a one step search) is used. We present, in this paper, an alternative method which is a hierarchical search strategy involving two template banks. We show that the computational power required by such a two step search, for an on-line detection of the one parameter family of Newtonian signals, is 1/8 of that required when an on-line one step search is used. This reduction is achieved when signals having a strength of ~8.8 times the noise r.m.s. value are required to be detected with a probability of ~0.95 while allowing for not more than one false event per year on the average. We present approximate formulae for the detection probability of a signal and the false alarm probability. Our numerical results are specific to the noise power spectral density expected for the initial LIGO.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252223
@article{bwmeta1.element.bwnjournal-article-bcpv41z2p221bwm,
     author = {Mohanty, S. and Dhurandhar, S.},
     title = {Gravitational waves from coalescing binaries: a hierarchical signal detection strategy},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {221-233},
     zbl = {0960.94010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p221bwm}
}
Mohanty, S.; Dhurandhar, S. Gravitational waves from coalescing binaries: a hierarchical signal detection strategy. Banach Center Publications, Tome 38 (1997) pp. 221-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p221bwm/

[000] [1] A. Abramovici et al., Science, 256, 325 (1992).

[001] [2] C. Bradaschia et al., Nucl. Inst. A., 289, 518 (1990).

[002] [3] K.S. Thorne, in 300 Years of Gravitation, S.W. Hawking and W.Israel (eds.), (Cambridge Univ. Press, 1987).

[003] [4] B.F. Schutz, in The Detection of Gravitational Radiation, edited by D. Blair (Cambridge, 1989) pp 406-427.

[004] [5] Helstrom C.W. Helstrom, Statistical Theory of Signal Detection, 2nd. ed, (Pergamon Press, London, 1968). | Zbl 0115.13102

[005] [6] B.S. Sathyaprakash and S.V. Dhurandhar, Phys. Rev. D 44, 3819 (1991).

[006] [7] S.V. Dhurandhar and B.S. Sathyaprakash, Phys. Rev. D 49, 1707 (1994).

[007] [8] B. Owen, submitted to Phys. Rev. D (Caltech preprint).

[008] [9] T. A. Apostolatos, submitted to Phys. Rev. D (Preprint : Max-Planck, Jena).

[009] [10] Workshop on Coalescing Binaries, Conf. on Astrophysical Sources of Gravitational waves, Pennsylvania State University (July 1995).

[010] [11] J. P. A. Clarke and D. M. Eardley, Astrophys. J. 215, 311, (1977).

[011] [12] L.S. Finn and D.F. Chernoff, Phys. Rev. D 47, 2198 (1993).

[012] [13] Press, Flannery, Teukolsky, Vetterling, Numerical Recipes (Cambridge Univ. Press, 1986).

[013] [14] C. Cutler and E. E. Flanagan, Phys. Rev. D 49, 2658 (1994).

[014] [15] O. E. Brigham, Fast Fourier transform and its applications, (Prentice-Hall, Englewood Cliffs, 1988).

[015] [16] R. N. Bracewell, Fourier transform and its applications, 2nd ed. (McGraw-Hill, New York, 1986). | Zbl 0149.08301

[016] [17] J. W. Goodman, Statistical Optics, (John Wiley, New York, 1985).

[017] [18] B. F. Schutz and M. Tinto, Mon. Not. R. Astron. Soc. 224, 131 (1987).

[018] [19] S. V. Dhurandhar and M. Tinto, Mon. Not. R. Astron. Soc. 234, 663 (1988).