Wavelet transform and binary coalescence detection
Innocent, Jean-Michel ; Torrésani, Bruno
Banach Center Publications, Tome 38 (1997), p. 179-208 / Harvested from The Polish Digital Mathematics Library

We give a short account of some time-frequency methods which are relevant in the context of gravity waves detection. We focus on the case of wavelet analysis which we believe is particularly appropriate. We show how wavelet transforms can lead to efficient algorithms for detection and parameter estimation of binary coalescence signals. In addition, we give in an appendix some of the ingredients needed for the construction of discrete wavelet decompositions and corresponding fast algorithms.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252200
@article{bwmeta1.element.bwnjournal-article-bcpv41z2p179bwm,
     author = {Innocent, Jean-Michel and Torr\'esani, Bruno},
     title = {Wavelet transform and binary coalescence detection},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {179-208},
     zbl = {0960.94007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p179bwm}
}
Innocent, Jean-Michel; Torrésani, Bruno. Wavelet transform and binary coalescence detection. Banach Center Publications, Tome 38 (1997) pp. 179-208. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p179bwm/

[000] [1] A. Abramovici et al. (1992): LIGO: the Laser Interferometer Gravitational-Wave Observatory, Science, 256, p. 325-333.

[001] [2] P. Abry and A. Aldroubi (1995): Designing Multiresolution Analysis Type Wavelets and their Fast Algorithms, Int. J. of Fourier Anal. and Appl. 2, 135-159. | Zbl 0887.42024

[002] [3] A. Antoniadis & G. Oppenheim Eds (1994): proceedings of the conference Wavelets and Statistics, Villard de Lans, France, Lecture Notes in Statistics.

[003] [4] F. Auger and P. Flandrin (1993): Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method, Technical Report 93.05, Laboratoire d'automatique, Ecole Centrale de Nantes.

[004] [5] R. Balasubramanian, B.S. Sathyaprakash and S.V. Dhurhandar (1995): Gravitational Waves from Coalescing Binaries: Detection Strategies and Monte Carlo Estimation of Parameters, Phys. Rev. D 53, vol. 6 pp. 3033-3055.

[005] [6] L. Blanchet, T. Damour and B.R. Iyer (1995): Phys. Rev. D 51, p. 5360.

[006] [7] B. Boashash (1992): Estimating and Interpreting the Instantaneous Frequency of a Signal, Part I: Fundamentals. Proc. IEEE 80, pp. 520-538. Part II: Applications and Algorithms. Proc. IEEE 80, pp. 540-568.

[007] [8] C. Bradaschia et al. (1990): Nucl. Instrum. Methods Phys. Res. A 518.

[008] [9] D.R. Brillinger (1981): Time Series; Data Analysis and Theory, Holden Day Inc. | Zbl 0486.62095

[009] [10] R. Carmona (1993): Wavelet Identification of Transients in Noisy Signals. in Mathematical Imaging: Wavelet Applications in Signal and Image Processing pp. 392-400.

[010] [11] R. Carmona, W.L. Hwang, B. Torrésani (1995): Characterization of signals by the ridges of their wavelet transform, preprint, submitted to IEEE Trans. Signal Processing.

[011] [12] R. Carmona, W.L. Hwang, B. Torrésani (1995): Multiridge Detection and Time-Frequency Reconstruction, preprint, submitted to IEEE Trans. Signal Processing.

[012] [13] R. Carmona, W.L. Hwang, B. Torrésani, Practical Time-Frequency Analysis, monograph, to appear. | Zbl 1039.42504

[013] [14] C.K. Chui (1992): An Introduction to Wavelets, Academic Press. | Zbl 0925.42016

[014] [15] J.M. Combes, A. Grossmann, Ph. Tchamitchian Eds. (1989): Wavelets, Time-Frequency Methods and Phase Space, Springer Verlag.

[015] [16] E. Copson (1965): Asymptotic expansions, Cambridge University Press. | Zbl 0123.26001

[016] [17] I. Daubechies (1992): Ten Lectures on Wavelets, CBMS-NFS Regional Series in Applied Mathematics 61.

[017] [18] M.H.A. Davis (1989): A review of the statistical theory of signal detection in Gravitational Wave Data Analysis, B.F.Schutz Ed., Kluwer Academic Publishers.

[018] [19] N. Delprat, B. Escudié, P. Guillemain, R. Kronland-Martinet, Ph. Tchamitchian, B. Torrésani (1992): Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE Trans. Inf. Th. 38, special issue on Wavelet and Multiresolution Analysis 644-664. | Zbl 0743.42010

[019] [20] R.B. Dingle (1973): Asymptotic expansions, their derivation and interpretation, Academic Press. | Zbl 0279.41030

[020] [21] R. Flaminio, L. Massonnet, B. Mours, S. Tissot, D. Verkindt and M. Yvert (1994): Fast Trigger Algorithms for Binary Coalescences, Astroparticle Physics 2, pp. 235-248.

[021] [22] P. Flandrin (1993): Temps-Fréquence, Traité des Nouvelles Technologies, série Traitement du Signal, Hermes.

[022] [23] D. Gabor (1946): Theory of communication, J. Inst. Elec. Eng. 903, 429.

[023] [24] A. Grossmann, R. Kronland-Martinet, J. Morlet (1989): Reading and understanding the continuous wavelet transform, in [15] | Zbl 0850.42006

[024] [25] A. Grossmann, J. Morlet (1984): Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. of Math. An. 15 ,723. | Zbl 0578.42007

[025] [26] P. Hall, W. Qian and D.M. Titterington (1992): Ridge Finding from Noisy Data. J. Comput. and Graph. Statist. 1, 197-211.

[026] [27] J.M. Innocent (1994): Remarks about the Detection of Coalescent Binaries, VIRGO technical report.

[027] [28] J.M. Innocent and B. Torrésani (1996): A Multiresolution Strategy for Detecting Gravitational Waves Generated by Binary Collapses, Preprint.

[028] [29] J.M. Innocent, J.Y. Vinet (1992): Time-Frequency Analysis of Gravitational Signals from Coalescing Binaries, VIRGO technical Report.

[029] [30] S. Jaffard and Y. Meyer (1995): Pointwise Behavior of Functions, preprint.

[030] [31] M. Kass, A. Witkin and D.Terzopoulos (1988): Snakes: Active Contour Models, Int. J. of Computer Vision, 321-331. | Zbl 0646.68105

[031] [32] K. Kodera, R. Gendrin, C. de Villedary (1978): Analysis of time-varying signals with small BT values, IEEE Trans. ASSP 26, 64.

[032] [33] L.H. Koopmans (1995): The spectral Analysis of Time Series. Probability and Mathematical Statistics 22, Academic Press.

[033] [34] A. Królak (1989): Coalescing binaries to post-Newtonain order, in Gravitational Wave Data Analysis, B.F. Schutz Ed., Kluwer Academic Publishers.

[034] [35] A. Królak, K.D. Kokkotas, G. Schäfer (1995): On estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary, Phys.Rev. D52, 2089.

[035] [36] A. Królak and B.F. Schutz (1987): Coalescing binaries : probe of the Universe, General Relativity and Gravitation, 19, 1163-1171.

[036] [37] A. Królak, P. Trzaskoma (1996): Application of the Wavelet Analysis to Estimation of Parameter of the Gravitational-Wave Signal from a Coalescing Binary, Classical and Quantum Gravity 13, pp. 813-830. | Zbl 0849.60038

[037] [38] P.J.M. van Laarhoven and E.H.L. Aarts (1987): Simulated Annealing: Theory and Applications, Reidel Pub. Co. | Zbl 0643.65028

[038] [39] S. Mallat (1989): Multiresolution Approximation and Wavelets, Trans. AMS 615, 69-88.

[039] [40] Y. Meyer (1989): Ondelettes et opérateurs (1989), Hermann.

[040] [41] Y. Meyer Ed. (1989): Wavelets and applications, Proceedings of the second wavelet conference, Marseille (1989), Masson.

[041] [42] M.A. Muschietti and B. Torrésani (1995): Pyramidal Algorithms for Littlewood-Paley Decompositions. SIAM J. Math. Anal. 26 925-943. | Zbl 0834.47011

[042] [43] B. Picinbono, W. Martin (1983): Représentation des signaux par amplitude et phase instantanées, Annales des Télécommunications 38 (1983), 179-190. | Zbl 0526.94006

[043] [44] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery (1992): Numerical Recipes: the Art of Scientific Computing, Second Edition, Cambridge University Press. | Zbl 0845.65001

[044] [45] J. Stoer and R. Bulirsch (1991): Introduction to Numerical Analysis, Texts in Applied Mathematics 12, Springer Verlag. | Zbl 0771.65002

[045] [46] Ph. Tchamitchian, B. Torrésani (1991): Ridge and Skeleton extraction from wavelet transform, in Wavelets and their Applications, M.B. Ruskai & Al Eds, Jones&Bartlett, Boston.

[046] [47] K.S. Thorne (1987): Gravitational Radiation, in 300 Years of Gravitation, Hawking & Israel Eds, Cambridge University Press.

[047] [48] K.S. Thorne (1996): Gravitational Waves from Compact Objects, proceedings of the IAU Symposium 165, J. van Paradijs, E. van der Heuvel and E. Kuulkers Eds, Kluwer.

[048] [49] B. Torrésani (1995): Analyse Continue par Ondelettes, Coll. Savoirs Actuels, InterEditions/Editions du CNRS (in French, to be translated into English).

[049] [50] D. Verkindt (1993): Etude d'algorithmes rapides de recherche d'un signal d'onde gravitationnelle provenant de coalescence d'étoiles binaires, PhD Thesis, Université de Savoie (in French).

[050] [51] M. Vetterli and J. Kovacevic (1995): Wavelets and Sub Band Coding, Prentice Hall Signal Processing Series. | Zbl 0885.94002

[051] [52] J. Ville (1948): Théorie et Applications, de la Notion de Signal Analytique, Cables et Transmissions 2 61-74.

[052] [53] M.V. Wickerhauser (1994): Adapted Wavelet Analysis, from Theory to Software, A.K. Peters Publ. | Zbl 0818.42011

[053] [54] E.P. Wigner (1932): On the Quantum Corrections for the Thermodynamic Equilibrium, Phys. Rev. 40, 749-759. | Zbl 58.0948.07