Gravitational radiation from accreting neutron stars
Schutz, Bernard
Banach Center Publications, Tome 38 (1997), p. 11-17 / Harvested from The Polish Digital Mathematics Library

Neutron stars may emit steady gravitational wave signals that will be among the first kinds of gravitational wave signals that the new generation of interferometric detectors will search for. I consider here the possibility that accreting neutron stars may be driven into the steady emission of gravitational waves. I estimate the amplitudes that the waves may have if the accretion takes place at the Eddington limit, such as may happen when a neutron star spirals inside a giant star in the endphase of binary evolution. I consider the computational difficulties of conducting a search for such radiation from known target stars, allowing for the fact that the orbit will not be known from other observations. It seems possible that, with supercomputers, very sensitive searches of a handful of targets may be possible.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252196
@article{bwmeta1.element.bwnjournal-article-bcpv41z2p11bwm,
     author = {Schutz, Bernard},
     title = {Gravitational radiation from accreting neutron stars},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {11-17},
     zbl = {0900.83006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p11bwm}
}
Schutz, Bernard. Gravitational radiation from accreting neutron stars. Banach Center Publications, Tome 38 (1997) pp. 11-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z2p11bwm/

[000] [1] K. Danzmann, 'GEO 600 - A 600-m Laser Interferometric Gravitational Wave Antenna', in E. Coccia, G. Pizzella, F. Ronga, eds., Gravitational Wave Experiments, (World Scientific, Singapore, 1995),, p. 100-111.

[001] [2] C. N. Man et al., 'The Virgo Project: a Progress Report', in D. Blair, M.J. Buckingham, eds., The Fifth Marcel Grossmann Meeting, (World Scientific, Singapore, 1989), p. 1787-1801.

[002] [3] A. Abramovici et al., 'LIGO: The Laser Interferometer Gravitational-Wave Observatory', Science, 256, 325-333 (1992).

[003] [4] K. S. Thorne, 'Gravitational Radiation', in S.W. Hawking, W. Israel, eds., 300 Years of Gravitation, (Cambridge University Press, Cambridge, 1987), p. 330-458. | Zbl 0966.83515

[004] [5] C. Cutler et al., Phys. Rev. Lett., 70, 1984 (1993).

[005] [6] R. V. Wagoner, Astrophys. J., 278, 345 (1984).

[006] [7] E. P. J. Van den Heuvel, and D. Bhattacharya, Phys. Rep., 303, 1-121 (19??).

[007] [8] S. Chandrasekhar, Phys. Rev. Lett., 24, 611 (1970).

[008] [9] J. L. Friedman, B. F. Schutz, 'Secular Instability of Rotating Newtonian Stars', Astrophys. J., 222, 281-296 (1978).

[009] [10] C.W. Misner, K. S. Thorne, J. L. Wheeler, Gravitation, (Freeman, San Francisco, 1973).

[010] [11] L. Lindblom and G. Mendell, Astrophys. J., 444, 804-809 (1995).

[011] [12] N. Stergioulas, The Structure and Stability of Rotating Relativistic Stars (PhD Thesis, University of Wisconsin-Milwaukee, 1996).

[012] [13] B. F. Schutz, 'Data Processing Analysis and Storage for Interferometric Antennas', in D.G. Blair, ed., The Detection of Gravitational Waves, (Cambridge University Press, Cambridge England, 1991), p. 406-452.

[013] [14] P. Brady, T. Creighton, C. Cutler, and B. F. Schutz, 'Searching for periodic sources with LIGO', submitted for publication (gr-qc9702050).