@article{bwmeta1.element.bwnjournal-article-bcpv41z1p91bwm, author = {Sogge, Christopher}, title = {Fourier integral operators and nonlinear wave equations}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {91-108}, zbl = {0893.35146}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p91bwm} }
Sogge, Christopher. Fourier integral operators and nonlinear wave equations. Banach Center Publications, Tome 38 (1997) pp. 91-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p91bwm/
[000] [1] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69-85. | Zbl 0626.42012
[001] [2] G. Eskin, Degenerate elliptic pseudo-differential operators of principal type (Russian), Mat. Sbornik 82 (124) (1970), 585-628; English translation, Math. USSR Sbornik 11 (1970), 539-582.
[002] [3] V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., to appear. | Zbl 0893.35075
[003] [4] R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations Math. Z. 177, 323-340. | Zbl 0438.35045
[004] [5] R. Glassey, Existence in the large for ☐u=F(u) in two dimensions, Math. Z 178 (1981), 233-261 | Zbl 0451.35039
[005] [6] J. Harmse, On Lebesgue space estimates for the wave equation, Indiana Math. J. 39 (1990), 229-248. | Zbl 0683.35008
[006] [7] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79-183. | Zbl 0212.46601
[007] [8] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Annals of Math. 121 (1985), 463-494. | Zbl 0593.35119
[008] [9] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235-265. | Zbl 0406.35042
[009] [10] H. Kubo, On the critical decay and power for semilinear wave equations in odd space dimensions, preprint. | Zbl 0948.35082
[010] [11] H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357-426. | Zbl 0846.35085
[011] [12] H. Lindblad and C. D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math. 118 (1996), 1047-1135. | Zbl 0869.35064
[012] [13] H. Lindblad and C. D. Sogge, Restriction theorems and semilinear Klein-Gordon equations in (1+3)-dimensions, Duke Math. J. 85 (1996), 227-252. | Zbl 0865.35077
[013] [14] C. Müller, On the behavior of the solutions of the differential equation ΔU=F(x,U) in the neighborhood of a point, Comm. Pure Appl. Math. 7 (1954), 505-514.
[014] [15] J. Schaeffer, The equation for the critical value of p, Proc. Royal Soc. Edinburgh 101 (1985), 31-44. | Zbl 0592.35080
[015] [16] A. Seeger, C. D. Sogge and E. M. Stein, Regularity properties of Fourier integral operators, Annals of Math. 134 (1985), 231-251. | Zbl 0754.58037
[016] [17] T. Sideris, Nonexistence of global solutions of wave equations in high dimensions, Comm. Partial Diff. Equations 12 (1987), 378-406. | Zbl 0555.35091
[017] [18] C. D. Sogge, Propagation of singularities and maximal functions in the plane, Invent. Math. 104 (1991), 349-376. | Zbl 0754.35004
[018] [19] C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Math. 105, Cambridge Univ. Press, Cambridge, 1993.
[019] [20] C. D. Sogge, Lectures on nonlinear wave equations, International Press, Cambridge, 1995.
[020] [21] C. D. Sogge and E. M. Stein, Averages of functions over hypersurfaces: Smoothness of generalized Radon transforms, J. Analyse Math. 54, 165-188. | Zbl 0695.42012
[021] [22] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492. | Zbl 0072.32402
[022] [23] W. Strauss, Nonlinear scattering theory, Scattering theory in mathematical physics, Reidel, Dordrect, 1979, pp. 53-79.
[023] [24] W. Strauss, Nonlinear scattering at low energy, J. Funct. Anal. 41 (1981), 110-133. | Zbl 0466.47006
[024] [25] R. Strichartz, A priori estimates for the wave equation and some applications, J. Funct. Analysis 5 (1970), 218-235. | Zbl 0189.40701
[025] [26] T. Wolff, A sharp estimate via incidence geometry, Amer. J. Math. (to appear).
[026] [27] Y. Zhou, Cauchy problem for semilinear wave equations with small data in four space dimensions, J. Diff. Equations 8 (1995), 135-144. | Zbl 0836.35099