An introduction to the Einstein-Vlasov system
Rendall, Alan
Banach Center Publications, Tome 38 (1997), p. 35-68 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252216
@article{bwmeta1.element.bwnjournal-article-bcpv41z1p35bwm,
     author = {Rendall, Alan},
     title = {An introduction to the Einstein-Vlasov system},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {35-68},
     zbl = {0892.35148},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p35bwm}
}
Rendall, Alan. An introduction to the Einstein-Vlasov system. Banach Center Publications, Tome 38 (1997) pp. 35-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p35bwm/

[000] [1] S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterEditions, Paris, 1991.

[001] [2] R. Bartnik, The mass of an asymptotically flat manifold, Commun. Pure Appl. Math. 34 (1986), 661-693. | Zbl 0598.53045

[002] [3] J. Binney and S. Tremaine, Galactic dynamics, Princeton University Press, Princeton, 1987. | Zbl 1130.85301

[003] [4] G. A. Burnett and A. D. Rendall, Existence of maximal hypersurfaces in some spherically symmetric spacetimes, Class. Quantum Grav. 13 (1996), 111-123. | Zbl 0843.53047

[004] [5] D. Christodoulou, Violation of cosmic censorship in the gravitational collapse of a dust cloud, Commun. Math. Phys. 93 (1984), 171-195.

[005] [6] D. Christodoulou, The problem of a self-gravitating scalar field, Commun. Math. Phys. 105 (1986), 337-361. | Zbl 0608.35039

[006] [7] Y. Choquet-Bruhat, Problème de Cauchy pour le système intégro différentiel d'Einstein-Liouville, Ann. Inst. Fourier 21 (1971), 181-201. | Zbl 0208.14303

[007] [8] Y. Choquet-Bruhat and J. York, The Cauchy problem, in: General Relativity and Gravitation, Vol. 1, A. Held (ed.), Plenum, New York, 1980 99-172.

[008] [9] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Wiley, New York, 1989. | Zbl 0729.35001

[009] [10] J. Ehlers, Survey of general relativity theory, in: Relativity, Astrophysics and Cosmology, W. Israel (ed.), Reidel, Dordrecht, 1973, 55-89.

[010] [11] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. | Zbl 0499.58003

[011] [12] S. W. Hawking and G. F. R. Ellis, The large-scale structure of space-time, Cambridge University Press, Cambridge, 1973. | Zbl 0265.53054

[012] [13] P.-L. Lions and B. Perthame, Propagation of moments and regularity for the three-dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), 415-430.

[013] [14] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Springer, New York, 1984. | Zbl 0537.76001

[014] [15] E. Malec and N. Ó Murchadha, Optical scalars and singularity avoidance in spherical spacetimes, Phys. Rev. D50 (1994), 6033-6036.

[015] [16] J. E. Marsden and F. J. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep. 66 (1980), 109-139.

[016] [17] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Equations 95 (1992), 281-303. | Zbl 0810.35089

[017] [18] M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press, New York, 1972. | Zbl 0242.46001

[018] [19] G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Commun. Math. Phys. 135 (1990), 41-78. | Zbl 0722.35091

[019] [20] G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data, Commun. Math. Phys. 150 (1992), 561-583. Erratum: Commun. Math. Phys. 176 (1996), 475-478. | Zbl 0774.53056

[020] [21] G. Rein and A. D. Rendall, Global existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting, Arch. Rat. Mech. Anal. 126 (1994), 183-201. | Zbl 0808.35109

[021] [22] G. Rein, A. D. Rendall and J. Schaeffer, A regularity theorem for solutions of the spherically symmetric Vlasov-Einstein system, Commun. Math. Phys. 168 (1995), 467-478. | Zbl 0830.35141

[022] [23] A. D. Rendall, On the choice of matter model in general relativity, Approaches to Numerical Relativity, R. d'Inverno (ed.), Cambridge University Press, Cambridge, 1992, 94-102.

[023] [24] A. D. Rendall, Cosmic censorship and the Vlasov equation, Class. Quantum Grav. 9 (1992), L99-L104.

[024] [25] A. D. Rendall, Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry, Class. Quantum Grav. 12 (1995), 1517-1533. | Zbl 0823.53072

[025] [26] D. G. Swanson, Plasma Waves, Academic Press, Boston, 1989.

[026] [27] S. L. Shapiro and S. A. Teukolsky, Relativistic stellar dynamics on the computer. I. Motivation and numerical method, Astrophys. J. 298 (1985), 34-57.

[027] [28] R. M. Wald, General Relativity, Chicago University Press, Chicago, 1984.