Integrability and Einstein's equations
Woodhouse, N.
Banach Center Publications, Tome 38 (1997), p. 221-232 / Harvested from The Polish Digital Mathematics Library

1. Introduction. In recent years, there has been considerable interest in Oxford and elsewhere in the connections between Einstein's equations, the (anti-) self-dual Yang-Mills (SDYM) equations, and the theory of integrable systems. The common theme running through this work is that, to a greater or lesser extent, all three areas involve questions that can be addressed by twistor methods. In this paper, I shall review progress, with particular emphasis on the known and potential applications in relativity. Some of the results are well-established, others are more recent, and a few appear here for the first time.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252252
@article{bwmeta1.element.bwnjournal-article-bcpv41z1p221bwm,
     author = {Woodhouse, N.},
     title = {Integrability and Einstein's equations},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {221-232},
     zbl = {0891.35158},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p221bwm}
}
Woodhouse, N. Integrability and Einstein's equations. Banach Center Publications, Tome 38 (1997) pp. 221-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p221bwm/

[000] Ablowitz, M. J. and Clarkson, P. A. (1991), Solitons, nonlinear evolution equations and inverse scattering. London Mathematical Society Lecture Notes in Mathematics, 149, Cambridge University Press, Cambridge. | Zbl 0762.35001

[001] Ashtekar, A., Jacobson, T. and Smolin, L. (1988), A new characterization of half-flat solutions to Einstein's equation. Commun. Math. Phys., 115, 631-48. | Zbl 0642.53079

[002] Atiyah, M. F., Hitchin, N. J. and Singer, I. M. (1978), Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. Lond., A 362, 425-61. | Zbl 0389.53011

[003] Atiyah, M. F. and Ward, R. S. (1977), Instantons and algebraic geometry. Commun. Math. Phys., 55, 111-24. | Zbl 0362.14004

[004] Berger, B. K., Chruściel, P. T. and Moncrief, V. (1995), On ’asymptotically flat’ spacetimes with G2-invariant Cauchy surfaces. Ann. Phys., 237, 322-54. | Zbl 0967.83507

[005] Calvert, G. and Woodhouse, N. M. J. (1996), Painlevé transcendents and Einstein's equation. Class. Quantum Grav., 13, L33-9. | Zbl 0846.58074

[006] Chakravarty, S., Mason, L. J. and Newman, E. T. (1991), Canonical structures on anti-self-dual four-manifolds and the diffeomorphism group. J. Math. Phys., 32, 1458-64. | Zbl 0765.53061

[007] Chandrasekhar, S. (1986), Cylindrical gravitational waves. Proc. Roy. Soc. Lond., A408, 209-32. | Zbl 0612.53052

[008] Cosgrove, C. M. (1977), New family of exact stationary axisymmetric gravitational fields generalising the Tomimatsu-Sato solutions. J. Phys., A10, 1481-524.

[009] Dunajski, M., Mason, L. J. and Woodhouse, N. M. J. (1996), From 2D integrable systems to self-dual gravity. In preparation. | Zbl 0948.83054

[010] Fletcher, J. (1990), Non-Hausdorff twistor spaces and the global geometry of space-time. D. Phil. thesis, University of Oxford.

[011] Fletcher, J. and Woodhouse, N. M. J. (1990), Twistor characterization of stationary axisymmetric solutions of Einstein's equations. In Twistors in mathematics and physics. Eds. T. N. Bailey and R. J. Baston. London Mathematical Society Lecture Notes in Mathematics, 156. Cambridge University Press, Cambridge.

[012] Geroch, R. (1971), A method for generating new solutions of Einstein's equations. J. Math. Phys., 12, 918-24. | Zbl 0214.49002

[013] Geroch, R. (1972), A method for generating new solutions of Einstein's equations, II. J. Math. Phys., 13, 394-404. | Zbl 0241.53038

[014] Gohberg, I. C. and Krein, M. G. (1958), Systems of integral equations on the half line with kernels depending on the difference of the arguments. Uspekhi Mat. Nauk, 13, 3-72. (Russian)

[015] Hitchin, N. J. (1995), Twistor spaces, Einstein metrics and isomonodromic deformations. J. Diff. Geom., 42, 30-112. | Zbl 0861.53049

[016] Hoenselaers, C. and Dietz, W. (eds.) (1984), Solutions of Einstein's equations: techniques and results. Lecture Notes in Physics, 205. Springer, Berlin. | Zbl 0544.00017

[017] Ince, E. L. (1956), Ordinary differential equations. Dover, New York. | Zbl 0063.02971

[018] Kinnersley, W. (1977), Symmetries of the stationary Einstein-Maxwell field equations, I. J. Math. Phys., 18, 1529-37.

[019] Kinnersley, W. and Chitre, D. M. (1977-8), Symmetries of the stationary Einstein-Maxwell field equations, II-IV. J. Math. Phys., 18, 1538-42, 19, 1926-31, 2037-42.

[020] Léauté, B. and Marcilhacy, G. (1979), Sur certaines particulières transcendantes des équations d'Einstein. Ann. Inst. H. Poincaré, 31, 363-75. | Zbl 0449.35088

[021] Mason, L. J., Chakravarty, S. and Newman, E. T. (1988), Bäcklund transformations for the anti-self-dual Yang-Mills equations. J. Math. Phys., 29, 4, 1005-13. | Zbl 0649.58042

[022] Mason, L. J. and Newman, E. T. (1989). A connection between the Einstein and Yang-Mills equations. Commun. Math. Phys., 121, 659-68. | Zbl 0668.53048

[023] Mason, L. J. and Sparling, G. A. J. (1989), Nonlinear Schrödinger and Korteweg de Vries are reductions of self-dual Yang-Mills. Phys. Lett., A137, 29-33.

[024] Mason, L. J. and Woodhouse, N. M. J. (1993), Self-duality and the Painlevé transcendents. Nonlinearity, 6, 569-81. | Zbl 0778.34004

[025] Mason, L. J. and Woodhouse, N. M. J. (1996), Integrability, self-duality, and twistor theory. London Mathematical Society Monographs. Oxford University Press, Oxford. | Zbl 0856.58002

[026] Maszczyk, R. (1995), The symmetry transformation--self-dual Yang-Mills fields and self-dual metrics. Ph. D. Thesis, Warsaw University. | Zbl 0822.53016

[027] Maszczyk, R., Mason, L. J. and Woodhouse, N. M. J. (1994), Self-dual Bianchi metrics and the Painlevé transcendents. Class. Quantum Grav., 11, 65-71. | Zbl 0790.53032

[028] Newman, E. T. (1978), Source-free Yang-Mills theories. Phys. Rev., D18, 2901-2908.

[029] Penrose, R. (1976), Nonlinear gravitons and curved twistor theory. Gen. Rel. Grav., 7, 31-52. | Zbl 0354.53025

[030] Penrose, R. (1992), Twistors as spin 3/2 charges. In Gravitation and modern cosmology. Eds. A. Zichichi and N. Sánchez. Plenum Press, New York.

[031] Persides, S. and Xanthopoulos, B. C. (1988), Some new stationary axisymmetric asymptotically flat space-times obtained from Painlevé transcendents. J. Math. Phys., 29, 674-80. | Zbl 0649.53033

[032] Tod, K. P. (1994), Self-dual Einstein metrics from the Painlevé VI equation. Phys. Lett., A190, 221-4. | Zbl 0960.83505

[033] Ward, R. S. (1977), On self-dual gauge fields. Phys. Lett., 61A, 81-2. | Zbl 0964.81519

[034] Ward, R. S. (1983), Stationary axisymmetric space-times: a new approach. Gen. Rel. Grav., 15, 105-9. | Zbl 0504.53022

[035] Ward, R. S. (1985), Integrable and solvable systems and relations among them. Phil. Trans. R. Soc., A315, 451-7. | Zbl 0579.35078

[036] Ward, R. S. (1990 a), Integrable systems in twistor theory. In Twistors in mathematics and physics. Eds. T. N. Bailey and R. J. Baston. London Mathematical Society Lecture Notes in Mathematics, 156. Cambridge University Press, Cambridge.

[037] Ward, R. S. (1990 b), The SU(∞) chiral model and self-dual vacuum spaces. Class. Quantum Grav., 7, L217-22. | Zbl 0702.53055

[038] Ward, R. S. (1992), Infinite-dimensional gauge groups and special nonlinear gravitons. J. Geom. Phys., 8, 317-25. | Zbl 0770.53022

[039] Witten, L. (1979), Static axially symmetric solutions of self-dual SU(2) gauge fields in Euclidean four-dimensional space. Phys. Rev., D19, 718-20.

[040] Woodhouse, N. M. J. (1989), Cylindrical gravitational waves. Class. Quantum Grav., 6, 933-43. | Zbl 0682.35073

[041] Woodhouse, N. M. J. (1990 a), Ward's splitting construction for stationary axisymmetric solutions of the Einstein-Maxwell equations. Class. Quantum Grav., 7, 257-60. | Zbl 0694.35182

[042] Woodhouse, N. M. J. (1990 b), Spinors, twistors, and complex methods. In: General relativity and Gravitation 1989, pp. 93-8 (eds Ashby, Bartlett, and Wyss), CUP.

[043] Woodhouse, N. M. J. and Mason, L. J. (1988), The Geroch group and non-Hausdorff twistor spaces. Nonlinearity, 1, 73-114. | Zbl 0651.58038

[044] Yang, C. N. (1977), Condition of self-duality for SU(2) gauge fields on Euclidean four-dimensional space. Phys. Rev. Lett., 38, 1377-9.