Some rigidity results for spatially closed spacetimes
Galloway, Gregory
Banach Center Publications, Tome 38 (1997), p. 21-34 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252242
@article{bwmeta1.element.bwnjournal-article-bcpv41z1p21bwm,
     author = {Galloway, Gregory},
     title = {Some rigidity results for spatially closed spacetimes},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {21-34},
     zbl = {0901.53047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p21bwm}
}
Galloway, Gregory. Some rigidity results for spatially closed spacetimes. Banach Center Publications, Tome 38 (1997) pp. 21-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p21bwm/

[000] [AGH] L. Andersson, G.J. Galloway, and R. Howard, A strong maximum principle for weak solutions of quasi-linear elliptic equations with applications to Lorentzian geometry, preprint. | Zbl 0935.35020

[001] [AH] L. Andersson and R. Howard, Rigidity results for Robertson-Walker and related spacetimes, preprint.

[002] [B1] R. Bartnik, Regularity of variational maximal surfaces, Acta Mathematica 161 (1988), 145-181. | Zbl 0667.53049

[003] [B2] R. Bartnik, Remarks on cosmological spacetimes and constant mean curvature surfaces, Commun. Math. Phys. 117 (1988), 615-624. | Zbl 0647.53044

[004] [BEE] J.K. Beem, P.E. Ehrlich, K.L. Easley, Global Lorentzian Geometry, 2nd ed., Marcel Dekker, New York, 1996.

[005] [BF] D. Brill and F. Flaherty, Isolated maximal hypersurfaces in spacetime, Commun. Math. Phys. 50 (1976), 157-165. | Zbl 0337.53051

[006] [B+] R. Budic, J. Isenberg, L. Lindblom and P.B. Yasskin, On the determination of Cauchy surfaces from intrinsic properties, Comm. Math. Phys. 61 (1978), 87-95. | Zbl 0403.53030

[007] [C] E. Calabi, An extension of E. Hopf's maximum principle with applications to Riemannian geometry, Duke Math. J. 25 (1957), 45-56. | Zbl 0079.11801

[008] [EhG] P. Ehrlich and G.J. Galloway, Timelike lines, Classical and Quantum Grav. J. (1990), 297-307.

[009] [E1] J.-H. Eschenburg, Local convexity and nonnegative curvature - Gromov's proof of the sphere theorem, Invent. Math. 84 (1986), 507-522. | Zbl 0594.53034

[010] [E2] J.-H. Eschenburg, The splitting theorem for spacetimes with strong energy condition, J. Diff. Geom. 27 (1988), 477-491. | Zbl 0647.53043

[011] [E3] J.-H. Eschenburg, Maximum principles for hypersurfaces, Manuscripta Math. 64 (1989), 55-75.

[012] [EG] J.-H. Eschenburg and G.J. Galloway, Lines in spacetimes, Comm. Math. Phys. 148 (1992), 209-216. | Zbl 0756.53028

[013] [F] T. Frankel, On the fundamental group of a comapct minimal submanifold, Ann. Math. 83 (1966), 68-73. | Zbl 0189.22401

[014] [G1] G.J. Galloway, Splitting theorems for spatially closed space-times, Commun. Math. Phys. 96 (1984), 423-429. | Zbl 0575.53040

[015] [G2] G.J. Galloway, The Lorentzian splitting theorem without completeness assumption, J. Diff.Geom. 29 (1989), 373-387. | Zbl 0667.53048

[016] [G3] G.J. Galloway, Some connections between global hyperbolicity and geodesic completeness, J. Geom. Phys. 6 (1989), 127-141. | Zbl 0677.53071

[017] [GH] G.J. Galloway and A. Horta, Regularity of Lorentzian Busemann functions, Trans. Amer. Math. Soc. 348 (1996), 2063-2084. | Zbl 0858.53052

[018] [GC] C. Gerhardt, H-surfaces in Lorentzian manifolds, Commun. Math. Phys. 89 (1983), 523-553. | Zbl 0519.53056

[019] [GR1] R. Geroch, Singularities in closed universes, Phys. Rev. Lett. 17 (1966), 445-447. | Zbl 0142.24007

[020] [GR2] R. Geroch, Singularities, in: Relativity, M. Carmeli, S. Fickler and L. Witten (eds.), Plenum Press, New York, 1970, 259-291.

[021] [GT] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations, 2nd ed., Springer-Verlag, New York, 1983.

[022] [HE] S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge, 1973. | Zbl 0265.53054

[023] [I] R. Ichida, Riemannian manifolds with compact boundary, Yokohama Math. J. 29 (1981), 169-177. | Zbl 0493.53033

[024] [K] A. Kasue, Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary, J. Math. Soc. Japan, 35 (1983), 117-131. | Zbl 0494.53039

[025] [N] R.P.A.C. Newman, A proof of the splitting conjecture of S.-T. Yau, J. Diff. Geom. 31 (1990), 163-184. | Zbl 0695.53049

[026] [S] R. Schoen, Uniqueness, symmetry and embeddedness of minimal surfaces, J. Diff. Geom. 18 (1983), 791-804. | Zbl 0575.53037