We give a review of results on the initial value problem for the Vlasov--Poisson system, concentrating on the main ingredients in the proof of global existence of classical solutions.
@article{bwmeta1.element.bwnjournal-article-bcpv41z1p179bwm, author = {Rein, Gerhard}, title = {Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {179-194}, zbl = {0893.35130}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p179bwm} }
Rein, Gerhard. Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system. Banach Center Publications, Tome 38 (1997) pp. 179-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p179bwm/
[000] [1] C. Bardos and P. Degond, Global existence for the Vlasov Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Analyse non linéaire 2 (1985), 101-111. | Zbl 0593.35076
[001] [2] J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Eqns. 25 (1977), 342-364. | Zbl 0366.35020
[002] [3] J. Batt, Asymptotic properties of spherically symmetric self-gravitating mass systems for t → ∞, Transport Theory and Statistical Mechanics 16 (1987), 763-778. | Zbl 0645.35010
[003] [4] J. Batt, W. Faltenbacher, and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal. 93 (1986), 159-183 . | Zbl 0605.70008
[004] [5] J. Batt, P. Morrison, and G. Rein, Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions, Arch. Rational Mech. Anal. 130 (1995), 163-182. | Zbl 0828.76093
[005] [6] J. Batt and G. Rein, A rigorous stability result for the Vlasov-Poisson system in three dimensions, Anal. di Mat. Pura ed Appl. 164 (1993), 133-154. | Zbl 0791.49030
[006] [7] F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Functional Analysis 111 (1993), 239-258. | Zbl 0777.35059
[007] [8] K. Ganguly and H. Victory, On the convergence of particle methods for multidimensional Vlasov-Poisson systems, SIAM J. Numer. Anal. 26 (1989), 249-288 | Zbl 0669.76146
[008] [9] R. Glassey and J. Schaeffer, On symmetric solutions of the relativistic Vlasov-Poisson system, Commun. Math. Phys. 101 (1985), 459-473. | Zbl 0582.35110
[009] [10] Y. Guo and W. Strauss, Nonlinear instability of double-humped equilibria, Ann. Inst. Henri Poincaré, Analyse non linéaire 12 (1995), 339-352 . | Zbl 0836.35130
[010] [11] Y. Guo and W. Strauss, Instability of periodic BGK equilibria, Commun. Pure and Appl. Math. XLVIII (1995), 861-894. | Zbl 0840.45012
[011] [12] E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II, Math. Meth. in the Appl. Sci. 4 (1982), 19-32. | Zbl 0485.35079
[012] [13] E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Meth. in the Appl. Sci. 16 (1993), 75-85. | Zbl 0782.35079
[013] [14] R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Meth. in the Appl. Sci. 19 (1996), 1409-1413. | Zbl 0872.35087
[014] [15] P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. math. 105 (1991), 415-430. | Zbl 0741.35061
[015] [16] K. Pfaffelmoser, Globale klassische Lösungen des dreidimensionalen Vlasov-Poisson-Systems, Dissertation, München 1989 . | Zbl 0722.35090
[016] [17] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Eqns. 95 (1992), 281-303. | Zbl 0810.35089
[017] [18] M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Academic Press, New York, 1975. | Zbl 0308.47002
[018] [19] G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Commun. Math. Phys. 135 (1990), 41-78. | Zbl 0722.35091
[019] [20] G. Rein, Nonlinear stability for the Vlasov-Poisson system--the energy-Casimir method, Math. Meth. in the Appl. Sci. 17 (1994), 1129-1140. | Zbl 0814.76094
[020] [21] G. Rein, Growth estimates for the solutions of the Vlasov-Poisson system in the plasma physics case, Math. Nachrichten, to appear.
[021] [22] G. Rein, Nonlinear stability of homogeneous models in Newtonian cosmology, Arch. Rational Mech. Anal., to appear.
[022] [23] G. Rein and A. Rendall, Global existence of classical solutions to the Vlasov-Poisson system in a three-dimensional, cosmological setting, Arch. Rational Mech. Anal. 126 (1994), 183-201. | Zbl 0808.35109
[023] [24] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Part. Diff. Eqns. 16 (1991), 1313-1335. | Zbl 0746.35050
[024] [25] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions (`The Good, the Bad, and the Ugly'), unpublished manuscript.