The positive mass theorem for ALE manifolds
Dahl, Mattias
Banach Center Publications, Tome 38 (1997), p. 133-142 / Harvested from The Polish Digital Mathematics Library

We show what extra condition is necessary to be able to use the positive mass argument of Witten [12] on an asymptotically locally euclidean manifold. Specifically we show that the 'generalized positive action conjecture' holds if one assumes that the signature of the manifold has the correct value.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252208
@article{bwmeta1.element.bwnjournal-article-bcpv41z1p133bwm,
     author = {Dahl, Mattias},
     title = {The positive mass theorem for ALE manifolds},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {133-142},
     zbl = {0890.53065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p133bwm}
}
Dahl, Mattias. The positive mass theorem for ALE manifolds. Banach Center Publications, Tome 38 (1997) pp. 133-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p133bwm/

[000] [1] L. Andersson and M. Dahl, ALE manifolds with nonnegative scalar curvature, in preparation. | Zbl 0946.53021

[001] [2] S. Bando, A. Kasue and H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Inv. Math. 97 (1989), 313-349. | Zbl 0682.53045

[002] [3] R. Bartnik, The mass of an asymptotically flat manifold, Comm. on Pure and Appl. Math. 39 (1986), 661-693. | Zbl 0598.53045

[003] [4] P. B. Gilkey, The geometry of spherical space form groups, Series in Pure Mathematics, vol. 7, World Scientific, Singapore, 1989. | Zbl 0789.57001

[004] [5] R.E. Greene, P. Petersen and Shunhui Zhu, Riemannian manifolds of faster than quadratic curvature decay, Internat. Math. Res. Notices. 9 (1994). | Zbl 0833.53037

[005] [6] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Diff. Geom. 29 (1989), 665-683. | Zbl 0671.53045

[006] [7] P. B. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Diff. Geom. 29 (1989), 685-697. | Zbl 0671.53046

[007] [8] H. B. Lawson and M.-L. Michelson, Spin geometry, Princeton University Press, Princeton, 1989.

[008] [9] C. LeBrun, Counterexamples to the generalized positive action conjecture, C.M.P. 118 (1988), 591-596. | Zbl 0659.53050

[009] [10] M.Y. Wang, Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), 59-68. | Zbl 0688.53007

[010] [11] M.Y. Wang, On non-simply connected manifolds with non-trivial parallel spinors, Ann. Global Anal. Geom. 13 (1995), 31-42. | Zbl 0826.53041

[011] [12] E. Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981), 381-402. | Zbl 1051.83532

[012] [13] J.A. Wolf, Spaces of constant curvature, McGraw-Hill, 1967. | Zbl 0162.53304