Lorentzian geometry in the large
Beem, John
Banach Center Publications, Tome 38 (1997), p. 11-20 / Harvested from The Polish Digital Mathematics Library

Lorentzian geometry in the large has certain similarities and certain fundamental differences from Riemannian geometry in the large. The Morse index theory for timelike geodesics is quite similar to the corresponding theory for Riemannian manifolds. However, results on completeness for Lorentzian manifolds are quite different from the corresponding results for positive definite manifolds. A generalization of global hyperbolicity known as pseudoconvexity is described. It has important implications for geodesic structures.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252222
@article{bwmeta1.element.bwnjournal-article-bcpv41z1p11bwm,
     author = {Beem, John},
     title = {Lorentzian geometry in the large},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {11-20},
     zbl = {0891.53047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p11bwm}
}
Beem, John. Lorentzian geometry in the large. Banach Center Publications, Tome 38 (1997) pp. 11-20. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p11bwm/

[000] [1] J. K. Beem and P. E. Ehrlich, Geodesic completeness and stability, Math. Proc. Camb. Phil. Soc. 102 (1987), 319-328. | Zbl 0643.53048

[001] [2] J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, Second Edition, Pure and Applied Math. Vol. 202, Marcel Dekker, New York, 1996.

[002] [3] J. K. Beem and S. G. Harris, The generic condition is generic, Gen. Rel. and Grav. 25 (1993), 939-962. | Zbl 0783.53015

[003] [4] J. K. Beem and S. G. Harris, Nongeneric null vectors, Gen. Rel. and Grav. 25 (1993), 963-973. | Zbl 0783.53016

[004] [5] J. K. Beem, R. J. Low, and P. E. Parker, Spaces of geodesics: products, coverings, connectedeness, Geometriae Dedicata 59 (1996), 51-64. | Zbl 0847.58009

[005] [6] J. K. Beem and P. E. Parker, Pseudoconvexity and geodesic connectedness, Annali Math. Pura. Appl. 155 (1989), 137-142. | Zbl 0695.53022

[006] [7] J. K. Beem and P. E. Parker, Sectional curvature and tidal accelerations, J. Math. Phys. 31 (1990), 819-827. | Zbl 0704.53066

[007] [8] P. T. Chruściel, On Uniqueness in the Large of Solutions of Einstein Equations ('Strong Cosmic Censorship'), Australian University Press, Canberra, 1991.

[008] [9] G. Galloway, The Lorentzian splitting theorem without completeness assumption, J. Diff. Geom. 29 (1989), 373-387. | Zbl 0667.53048

[009] [10] G. Galloway, The Lorentzian version of the Cheeger-Gromoll splitting theorem and its applications to General Relativity, in Differential Geometry: Geometry in Mathematical Physics and Related Topics, ed. R. Greene and S. -T. Yau, Amer. Math. Soc. Proceedings of Symposia in Pure Math., Vol. 54, Part 2 (1993), 249-257. | Zbl 0792.53060

[010] [11] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math. Vol. 55, Springer-Verlag, Berlin, 1975.

[011] [12] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, 1973 | Zbl 0265.53054

[012] [13] N. J. Hicks, Notes on Differential Geometry, D. Van Nostrand, Princeton, New Jersey, 1965. | Zbl 0132.15104

[013] [14] H. Hopf and W. Rinow, Über den Begriff des vollständigen differentialgeometrischen Fläche, Comment. Math. Helv. 3 (1931), 209-225. | Zbl 0002.35004

[014] [15] S. Kobayashi, Riemannian manifolds without conjugate points, Ann. Math. Pura. Appl. 53 (1961), 149-155. | Zbl 0100.18101

[015] [16] A. Królak, Black holes and weak cosmic censorship, Gen. Rel. and Grav. 16 (1984), 365-373. | Zbl 0537.53064

[016] [17] A. Królak and W. Rudnicki, Singularities, trapped sets, and cosmic censorship in asymptotically flat space-times, International J. Theoret. Phys. 32 (1993), 137-142. | Zbl 0782.53079

[017] [18] B. Mashhoon, Tidal radiation, Astrophys. J. 216 (1977), 591-609.

[018] [19] B. Mashhoon and J. C. McClune, Relativistic tidal impulse, Month. Notices Royal Astron. Soc. 262 (1993), 881-888.

[019] [20] R. P. A. C. Newman, A proof of the splitting conjecture of S.-T. Yau, J. Diff. Geom. 31 (1990), 163-184. | Zbl 0695.53049

[020] [21] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Math. Vol. 103, Academic Press, New York, 1983.

[021] [22] H. -J. Seifert, Global connectivity by timelike geodesics, Zs. f. Naturforsche 22a (1967), 1356-1360. | Zbl 0163.43701

[022] [23] P. M. Williams, Completeness and its stability on manifolds with connection, Ph.D. Thesis, Dept. Math. Univ. of Lancaster, 1984.