We study TT-tensors on conformally flat 3-manifolds (M,g). The Cotton-York tensor linearized at g maps every symmetric tracefree tensor into one which is TT. The question as to whether this is the general solution to the TT-condition is viewed as a cohomological problem within an elliptic complex first found by Gasqui and Goldschmidt and reviewed in the present paper. The question is answered affirmatively when M is simply connected and has vanishing 2nd de Rham cohomology.
@article{bwmeta1.element.bwnjournal-article-bcpv41z1p109bwm, author = {Beig, R.}, title = {TT-tensors and conformally flat structures on 3-manifolds}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {109-118}, zbl = {0894.53044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p109bwm} }
Beig, R. TT-tensors and conformally flat structures on 3-manifolds. Banach Center Publications, Tome 38 (1997) pp. 109-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv41z1p109bwm/
[000] [1] L. Bérard-Bergery, J. P. Bourguignon and J. Lafontaine (1975), Déformations localement triviales des variétés riemanniennes, Differential Geometry, Proc. Sympos. Pure Math., vol. XXVII, Part 1, Amer. Math. Soc., Providence, R.I., 3-32. | Zbl 0311.58011
[001] [2] A. L. Besse (1987), Einstein Manifolds, Springer, Berlin. | Zbl 0613.53001
[002] [3] E. Calabi (1971), On compact Riemannian manifolds with constant curvature. I, Differential Geometry, Proc. Sympos. Pure Math., vol. III, Amer. Math. Soc., Providence, R.I., 155-180.
[003] [4] S.-S. Chern, L. Simons (1974), Characteristic forms and geometric invariants, Ann. Math. 99, 48-69, and S.-S. Chern (1986), On a conformal invariant of three-dimensional manifolds, Aspects of Mathematics and its Applications, J. A. Barroso (Ed.), Elsevier Science Publishers B.V., 245-252.
[004] [5] Y. Choquet-Bruhat, J. W. York Jr. (1980), The Cauchy Problem, General Relativity and Gravitation, Vol. 1, A. Held (Ed.), Plenum, N.Y., 99-172.
[005] [6] S. Deser (1967), Covariant decomposition of symmetric tensors and the gravitational Cauchy problem, Ann. Inst. Henri Poincaré, VII, 149-188. | Zbl 0155.32801
[006] [7] S. Deser, R. Jackiw and S. Templeton (1982), Topologically Massive Gauge Theories, Ann. Phys. 140, 372-411.
[007] [8] D. Ferus (1981), A remark on Codazzi tensors in constant curvature spaces, Global Differential Geometry and Global Analysis, D. Ferus et al. (Eds.) LNM 838, Springer, Berlin, 257.
[008] [9] A. E. Fischer, J. E. Marsden (1977), The manifold of conformally equivalent metrics, Can. J. Math. XXIX, 193-209. | Zbl 0358.58006
[009] [10] J. Gasqui, H. Goldschmidt (1984), Déformations Infinitésimales des Structures Conformes Plates, Birkhäuser, Basel. | Zbl 0585.53001
[010] [11] G. Hall (1989), The global extension of local symmetries in general relativity, Class. Quant. Grav. 6, 157-161. | Zbl 0662.53052
[011] [12] S. Kobayashi, K. Nomizu (1963), Foundations of Differential Geometry Vol. 1, Interscience, Wiley, London. | Zbl 0119.37502
[012] [13] N. H. Kuiper (1949), On conformally-flat spaces in the large, Ann. Math. 50, 916-924, and N. H. Kuiper (1950), On compact conformally Euclidean spaces of dimension > 2, Ann. Math. 52, 478-490. | Zbl 0041.09303
[013] [14] J. P. Lafontaine (1983), Modules de structures conformes plates et cohomologie de groupes discrets, C.R. Acad. Sc. t. 297, Ser.. I, 655-658. | Zbl 0538.53022
[014] [15] G. D. Mostow (1973), Strong rigidity of locally symmetric spaces, Ann. of Math. Studies 78, Princeton. | Zbl 0265.53039
[015] [16] J. Schouten (1921), Über die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer Maß bestimmung auf eine Mannigfaltigkeit mit euklidischer Maß bestimmung, Math. Z. 11, 58-88. | Zbl 48.0857.02
[016] [17] P. Sommers (1978), The geometry of the gravitational field at spacelike infinity, J. Math. Phys. 19, 549-554.
[017] [18] D. C. Spencer (1969), Overdetermined systems of linear partial differential equations, Bull. AMS 75, 179-239. | Zbl 0185.33801
[018] [19] F. Warner (1983), Foundations of Differentiable Manifolds and Lie Groups, Springer, Berlin.
[019] [20] J. W. York Jr. (1973), Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity, J. Math. Phys. 14, 456-464, and J. W. York Jr. (1974), Covariant decompositions of symmetric tensors in the theory of gravitation, Ann. Inst. Henri Poincaré 21, 319-332. | Zbl 0259.53014