Weak c*-Hopf algebras: the coassociative symmetry of non-integral dimensions
Böhm, Gabriella ; Szlachányi, Kornél
Banach Center Publications, Tome 38 (1997), p. 9-19 / Harvested from The Polish Digital Mathematics Library

By allowing the coproduct to be non-unital and weakening the counit and antipode axioms of a C*-Hopf algebra too, we obtain a selfdual set of axioms describing a coassociative quantum group, that we call a weak C*-Hopf algebra, which is sufficiently general to describe the symmetries of essentially arbitrary fusion rules. It is the same structure that can be obtained by replacing the multiplicative unitary of Baaj and Skandalis with a partial isometry. The algebraic properties, the existence of the Haar measure and representation theory are briefly discussed. An algorithm is explained how to construct examples (in particular ones with non-integral dimensions) from non-Abelian cohomology.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252204
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p9bwm,
     author = {B\"ohm, Gabriella and Szlach\'anyi, Korn\'el},
     title = {Weak c*-Hopf algebras: the coassociative symmetry of non-integral dimensions},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {9-19},
     zbl = {0894.16018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p9bwm}
}
Böhm, Gabriella; Szlachányi, Kornél. Weak c*-Hopf algebras: the coassociative symmetry of non-integral dimensions. Banach Center Publications, Tome 38 (1997) pp. 9-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p9bwm/

[000] [1] G. Böhm, F. Nill, K. Szlachányi, Weak Hopf Algebras, in preparation.

[001] [2] S. Baaj, G. Skandalis, Ann. Sci. ENS 26, 425 (1993).

[002] [3] G. Böhm, K. Szlachányi, A Coassociative C*-Quantum Group with Non-Integral Dimensions, q-alq/9509008, Lett. Math. Phys. 35, 437 (1996).

[003] [4] S. Doplicher, J. E. Roberts, Ann. Math. 130 75 (1989), and Commun. Math. Phys. 131, 51 (1990). | Zbl 0702.46044

[004] [5] V. G. Drinfeld, Leningrad Math. J. 1 1419, (1990).

[005] [6] K. Fredenhagen, K.-H. Rehren and B. Schroer, Commun. Math. Phys. 125, 201 (1989).

[006] [7] Fuchs, Ganchev, Vecsernyés, Towards a classification of rational Hopf algebras, preprint NIKHEF-H/94-05 KL-TH-94/4, hep-th 9402 153.

[007] [8] R. Haag, Local Quantum Physics, Springer 1992. | Zbl 0777.46037

[008] [9] G. Mack and V. Schomerus, Endomorphisms and Quantum Symmetry of the Conformal Ising Model, in Algebraic Theory of Superselection Sectors, ed.: D. Kastler, World Scientific Singapore 1990. | Zbl 0715.17028

[009] [10] G. Mack and V. Schomerus, Nucl. Phys. B370, 185 (1992).

[010] [11] F. Nill, K. Szlachányi, H.-W. Wiesbrock, in preparation.

[011] [12] A. Ocneanu, Quantum Cohomology, Quantum Groupoids, and Subfactors, talk presented at the First Caribic School of Mathematics and Theoretical Physics, Guadeloupe 1993 (unpublished).

[012] [13] K.-H. Rehren, Braid Group Statistics and their Superselection Rules in: Algebraic Theory of Superselection Sectors, ed. D. Kastler, World Scientific 1990.

[013] [14] V. Schomerus, Quantum symmetry in quantum theory, DESY 93-018 preprint.

[014] [15] M. E. Sweedler, Hopf algebras, Benjamin 1969.

[015] [16] P. Vecsernyés, Nucl. Phys. B 415, 557 (1994).

[016] [17] S. L. Woronowicz, Commun. Math. Phys. 111, 613 (1987).