We introduce a representation theory of q-Lie algebras defined earlier in [DG1], [DG2], formulated in terms of braided modules. We also discuss other ways to define Lie algebra-like objects related to quantum groups, in particular, those based on the so-called reflection equations. We also investigate the truncated tensor product of braided modules.
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p99bwm, author = {Gurevich, Dimitri}, title = {Braided modules and reflection equations}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {99-110}, zbl = {0936.17014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p99bwm} }
Gurevich, Dimitri. Braided modules and reflection equations. Banach Center Publications, Tome 38 (1997) pp. 99-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p99bwm/
[000] [BG] A. Braverman, D. Gaitsgory, Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type, hep-th/9411113. | Zbl 0860.17002
[001] [DH] G. Delius, A. Hüffmann, On quantum algebras and quantum root systems, q-alg/9506017. | Zbl 0916.17011
[002] [DG1] J. Donin, D. Gurevich, Braiding of the Lie algebra , Amer. Math. Soc. Transl. (2) 167 (1995), pp. 23-36. | Zbl 0853.17009
[003] [DG2] J. Donin, D. Gurevich, Quantum orbits of R-matrix type, Lett. Math. Phys. 35 (1995), pp. 263-276. | Zbl 0853.17010
[004] [DGR] J. Donin, D. Gurevich, V. Rubtsov, Quantum hyperboloid and braided modules, q-alg/9511014.
[005] [G] D. Gurevich, Algebraic aspects of the quantum Yang-Baxter equation, Leningrad Math.J. 2 (1991), pp. 801-828. | Zbl 0728.17012
[006] [GP] D. Gurevich, D. Panyushev, On Poisson pairs associated to modified R-matrices, Duke Math. J. 73 (1994), pp.249-255. | Zbl 0824.58022
[007] [GR] D. Gurevich, V. Rubtsov, Quantization of Poisson pencils and generalized Lie algebras, Teor. i Mat. Phys. 103 (1995), pp. 476-488. | Zbl 0855.58032
[008] [I1] A. Isaev, Interrelation between Quantum Groups and Reflection Equation (Braided) Algebras, Lett. Math. Phys. 34 (1995), pp. 333-341. | Zbl 0878.17012
[009] [I2] A. Isaev, Quantum Groups and Yang-Baxter Equation, Phys. Part. Nucl. 26 (1995) n 5, pp. 501-526 (Russian).
[010] [IP1] A. Isaev, P. Pyatov, -covariant quantum algebras and covariant differential calculus, Phys. Let. A 179 (1993), pp.81-90.
[011] [IP2] A. Isaev, P. Pyatov, Covariant differential complex on quantum linear groups, J. Phys. A: Math. Gen. 28 (1995), pp. 2227-2246. | Zbl 0860.58003
[012] [KSS] P. Kulish, R. Sasaki, C. Schwiebert, Constant Solution of Reflection Equations and Quantum Groups, hep-th/9205039. | Zbl 0799.17010
[013] [LS] V. Lyubashenko, A. Sudbery, Quantum Lie algebras of type , q-alg/9510004.
[014] [M] Sh. Majid, Quantum and braided Lie algebras, JGP 13 (1994), pp.307-356. | Zbl 0821.17007