Introduction to quantum Lie algebras
Delius, Gustav
Banach Center Publications, Tome 38 (1997), p. 91-97 / Harvested from The Polish Digital Mathematics Library

Quantum Lie algebras are generalizations of Lie algebras whose structure constants are power series in h. They are derived from the quantized enveloping algebras Uh(g). The quantum Lie bracket satisfies a generalization of antisymmetry. Representations of quantum Lie algebras are defined in terms of a generalized commutator. The recent general results about quantum Lie algebras are introduced with the help of the explicit example of (sl2)h.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252214
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p91bwm,
     author = {Delius, Gustav},
     title = {Introduction to quantum Lie algebras},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {91-97},
     zbl = {0936.17013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p91bwm}
}
Delius, Gustav. Introduction to quantum Lie algebras. Banach Center Publications, Tome 38 (1997) pp. 91-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p91bwm/

[000] [1] Dri V. G. Drinfel'd, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254.

[001] [2] Jim M. Jimbo, A q-Difference Analogue of U(g) and the Yang-Baxter Equation, Lett. Math. Phys. 10 (1985) 63. | Zbl 0587.17004

[002] [3] G. W. Delius, A. Hüffmann, On Quantum Lie Algebras and Quantum Root Systems, q-alg/9506017, J. Phys. A. 29 (1996) 1703. | Zbl 0916.17011

[003] [4] G. W. Delius, M. D. Gould, Quantum Lie Algebras, their existence, uniqueness and q-antisymmetry, KCL-TH-96-05, q-alg/9605025, Commun. Math. Phys. (in print).

[004] [5] S. L. Woronowicz, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups), Comm. Math. Phys. 122 (1989) 125. | Zbl 0751.58042

[005] [6] P. Aschieri, L. Castellani, An introduction to noncommutative differential geometry on quantum groups, Int. J. Mod. Phys. A8 (1993) 1667 | Zbl 0802.58007

[006] D. Bernard, Quantum Lie Algebras and Differential Calculus on Quantum Groups, Prog. Theo. Phys. Suppl. 102 (1990) 49

[007] B. Jurco, Differential Calculus on Quantized Simple Lie Groups, Lett. Math. Phys. 22 (1991) 177 | Zbl 0753.17020

[008] P. Schupp, P. Watts, B. Zumino, Bicovariant Quantum Algebras and Quantum Lie Algebras, Commun. Math. Phys. 157 (1993) 305 | Zbl 0808.17010

[009] P. Schupp, Quantum Groups, Non-Commutative Differential Geometry and Applications, hep-th/9312075 (1993)

[010] K. Schmüdgen, A. Schüler, Classification of Bicovariant Differential Calculi on Quantum Groups of Type A, B, C and D, Comm. Math. Phys. 107 (1995) 635

[011] A. Sudbery, Quantum Lie Algebras of Type An, q-alg/9510004.

[012] [7] Andrew V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press (1994). | Zbl 0839.17009

[013] [8] G.W. Delius, M.D. Gould, A. Hüffmann, Y.-Z. Zhang, Quantum Lie algebras associated to Uq(gln) and Uq(sln), q-alg/9508013. | Zbl 0905.17008

[014] [9] V. Lyubashenko and A. Sudbery, Quantum Lie algebras of type A(N), q-alg/9510004.

[015] [10] World Wide Web, http:/www.mth.kcl.ac.uk/~delius/q-lie.html.