Quantum Lie algebras are generalizations of Lie algebras whose structure constants are power series in h. They are derived from the quantized enveloping algebras . The quantum Lie bracket satisfies a generalization of antisymmetry. Representations of quantum Lie algebras are defined in terms of a generalized commutator. The recent general results about quantum Lie algebras are introduced with the help of the explicit example of .
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p91bwm, author = {Delius, Gustav}, title = {Introduction to quantum Lie algebras}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {91-97}, zbl = {0936.17013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p91bwm} }
Delius, Gustav. Introduction to quantum Lie algebras. Banach Center Publications, Tome 38 (1997) pp. 91-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p91bwm/
[000] [1] Dri V. G. Drinfel'd, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254.
[001] [2] Jim M. Jimbo, A q-Difference Analogue of U(g) and the Yang-Baxter Equation, Lett. Math. Phys. 10 (1985) 63. | Zbl 0587.17004
[002] [3] G. W. Delius, A. Hüffmann, On Quantum Lie Algebras and Quantum Root Systems, q-alg/9506017, J. Phys. A. 29 (1996) 1703. | Zbl 0916.17011
[003] [4] G. W. Delius, M. D. Gould, Quantum Lie Algebras, their existence, uniqueness and q-antisymmetry, KCL-TH-96-05, q-alg/9605025, Commun. Math. Phys. (in print).
[004] [5] S. L. Woronowicz, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups), Comm. Math. Phys. 122 (1989) 125. | Zbl 0751.58042
[005] [6] P. Aschieri, L. Castellani, An introduction to noncommutative differential geometry on quantum groups, Int. J. Mod. Phys. A8 (1993) 1667 | Zbl 0802.58007
[006] D. Bernard, Quantum Lie Algebras and Differential Calculus on Quantum Groups, Prog. Theo. Phys. Suppl. 102 (1990) 49
[007] B. Jurco, Differential Calculus on Quantized Simple Lie Groups, Lett. Math. Phys. 22 (1991) 177 | Zbl 0753.17020
[008] P. Schupp, P. Watts, B. Zumino, Bicovariant Quantum Algebras and Quantum Lie Algebras, Commun. Math. Phys. 157 (1993) 305 | Zbl 0808.17010
[009] P. Schupp, Quantum Groups, Non-Commutative Differential Geometry and Applications, hep-th/9312075 (1993)
[010] K. Schmüdgen, A. Schüler, Classification of Bicovariant Differential Calculi on Quantum Groups of Type A, B, C and D, Comm. Math. Phys. 107 (1995) 635
[011] A. Sudbery, Quantum Lie Algebras of Type , q-alg/9510004.
[012] [7] Andrew V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press (1994). | Zbl 0839.17009
[013] [8] G.W. Delius, M.D. Gould, A. Hüffmann, Y.-Z. Zhang, Quantum Lie algebras associated to and , q-alg/9508013. | Zbl 0905.17008
[014] [9] V. Lyubashenko and A. Sudbery, Quantum Lie algebras of type A(N), q-alg/9510004.
[015] [10] World Wide Web, http:/www.mth.kcl.ac.uk/~delius/q-lie.html.