Multiplier Hopf algebras and duality
van Daele, A.
Banach Center Publications, Tome 38 (1997), p. 51-58 / Harvested from The Polish Digital Mathematics Library

We define a category containing the discrete quantum groups (and hence the discrete groups and the duals of compact groups) and the compact quantum groups (and hence the compact groups and the duals of discrete groups). The dual of an object can be defined within the same category and we have a biduality theorem. This theory extends the duality between compact quantum groups and discrete quantum groups (and hence the one between compact abelian groups and discrete abelian groups). The objects in our category are multiplier Hopf algebras, with invertible antipode, admitting invariant functionals (integrals), satisfying some extra condition (to take care of the non-abelianness of the underlying algebras). If we start with a multiplier Hopf *-algebra with positive invariant functionals, then also the dual is a multiplier Hopf *-algebra with positive invariant functionals. This makes it possible to formulate this duality also within the framework of C*-algebras.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252199
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p51bwm,
     author = {van Daele, A.},
     title = {Multiplier Hopf algebras and duality},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {51-58},
     zbl = {0872.17008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p51bwm}
}
van Daele, A. Multiplier Hopf algebras and duality. Banach Center Publications, Tome 38 (1997) pp. 51-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p51bwm/

[000] [1] E. Abe, Hopf Algebras, Cambridge University Press (1977).

[001] [2] V. G. Drinfel'd, Quantum groups, Proceedings ICM Berkeley (1986) 798-820.

[002] [3] E. Effros & Z.-J. Ruan, Discrete Quantum Groups I. The Haar Measure, Int. J. Math. 5 (1994) 681-723. | Zbl 0824.17020

[003] [4] Y. Nakagami, T. Masuda & S. L. Woronowicz, (in preparation).

[004] [5] P. Podleś & S. L. Woronowicz, Quantum Deformation of Lorentz Group, Comm. Math. Phys. 130 (1990) 381-431. | Zbl 0703.22018

[005] [6] E. M. Sweedler, Hopf Algebras, Benjamin (1969).

[006] [7] A. Van Daele, Dual Pairs of Hopf *-algebras, Bull. London Math. Soc. 25 (1993) 209-230.

[007] [8] A. Van Daele, The Haar Measure on Finite Quantum Groups, to appear in Proc. Amer. Math. Soc. | Zbl 0888.16023

[008] [9] A. Van Daele, The Haar Measure on Compact Quantum Groups, Proc. Amer. Math. Soc. 123 (1995) 3125-3128. | Zbl 0844.46032

[009] [10] A. Van Daele, Multiplier Hopf Algebra, Trans. Amer. Math. Soc. 342 (1994) 917-932.

[010] [11] A. Van Daele, Discrete Quantum Groups, J. of Algebra 180 (1996) 431-444. | Zbl 0864.17012

[011] [12] A. Van Daele, An Algebraic Framework for Group Duality, preprint K.U. Leuven (1996). | Zbl 0933.16043

[012] [13] B. Drabant & A. Van Daele, Pairing and The Quantum Double of Multiplier Hopf Algebras, preprint K.U. Leuven (1996).

[013] [14] J. Kustermans & A. Van Daele, C*-algebraic Quantum Groups arising from Algebraic Quantum Groups, preprint K.U. Leuven (1996). | Zbl 1009.46038

[014] [15] S. L. Woronowicz, Compact Matrix Pseudo Groups, Comm. Math. Phys. 111 (1987) 613-665. | Zbl 0627.58034

[015] [16] S. L. Woronowicz, Compact Quantum Groups, preprint University of Warsaw (1992).