The multiple gamma function and its q-analogue
Ueno, Kimio ; Nishizawa, Michitomo
Banach Center Publications, Tome 38 (1997), p. 429-441 / Harvested from The Polish Digital Mathematics Library

We give an asymptotic expansion (the higher Stirling formula) and an infinite product representation (the Weierstrass product formula) of the Vignéras multiple gamma function by considering the classical limit of the multiple q-gamma function.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252209
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p429bwm,
     author = {Ueno, Kimio and Nishizawa, Michitomo},
     title = {The multiple gamma function and its q-analogue},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {429-441},
     zbl = {0869.33001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p429bwm}
}
Ueno, Kimio; Nishizawa, Michitomo. The multiple gamma function and its q-analogue. Banach Center Publications, Tome 38 (1997) pp. 429-441. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p429bwm/

[000] [1] R. Askey, The q-Gamma and q-Beta functions, Appl. Anal. 8 (1978), pp. 125-141. | Zbl 0398.33001

[001] [2] E. W. Barnes, The theory of G-function, Quart. J. Math. 31 (1899), pp. 264-314. | Zbl 30.0389.02

[002] [3] E. W. Barnes, Genesis of the double gamma function, Proc. London. Math. Soc. 31 (1900), pp. 358-381. | Zbl 30.0389.03

[003] [4] E. W. Barnes, The theory of the double gamma function, Phil. Trans. Royal Soc. (A) 196 (1900), pp. 265-388.

[004] [5] E. W. Barnes, On the theory of the multiple gamma functions, Trans. Cambridge Phil. Soc. 19 (1904), pp. 374-425.

[005] [6] J. Dufresnoy et C. Pisot, Sur la relation fonctionnelle f(x+1)-f(x)=ϕ(x), Bull. Soc. Math. Belgique. 15 (1963), pp. 259-270. | Zbl 0122.09802

[006] [7] G. H. Hardy, On the expression of the double zeta-function and double gamma function in terms of elliptic functions, Trans. Cambridge. Phil. Soc. 20 (1905), pp. 395-427.

[007] [8] G. H. Hardy, On double Fourier series and especially these which represent the double zeta-function and incommensurable parameters, Quart. J. Math. 37, (1906), pp. 53-79.

[008] [9] F. H. Jackson, A generalization of the functions Γ(n) and xn, Proc. Roy. Soc. London. 74 (1904), pp. 64-72. | Zbl 35.0460.01

[009] [10] F. H. Jackson, The basic gamma function and the elliptic functions, Proc. Roy. Soc. London. A 76 (1905), pp. 127-144. | Zbl 36.0513.03

[010] [11] T. Koornwinder, Jacobi function as limit cases of q-ultraspherical polynomial, J. Math. Anal. and Appl 148 (1990), pp. 44-54. | Zbl 0713.33010

[011] [12] N. Kurokawa, Multiple sine functions and Selberg zeta functions, Proc. Japan. Acad. 67 A (1991), pp. 61-64. | Zbl 0738.11041

[012] [13] N. Kurokawa, Multiple zeta functions; an example, Adv. Studies. Pure. Math. 21 (1992), pp. 219-226. | Zbl 0795.11037

[013] [14] N. Kurokawa, Gamma factors and Plancherel measures, Proc. Japan. Acad. 68 A (1992), pp. 256-260.

[014] [15] N. Kurokawa, On a q-analogues of multiple sine functions, RIMS. kokyuroku 843. (1992), pp. 1-10

[015] [16] N. Kurokawa, Lectures delivered at Tokyo Institute of Technology, 1993.

[016] [17] Yu. Manin, Lectures on Zeta Functions and Motives, Asterisque. 228 (1995), pp. 121-163.

[017] [18] D. S. Moak, The q-analogue of Stirling Formula, Rocky Mountain J. Math,14 (1984),pp. 403-413. | Zbl 0538.33003

[018] [19] M. Nishizawa, On a q-analogue of the multiple gamma functions, to appear in Lett. Math. Phys. q-alg/9505086.

[019] [20] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. 1A. Vol 24 (1977), pp 167-199. | Zbl 0364.12012

[020] [21] T. Shintani, A proof of Classical Kronecker limit formula, Tokyo J. Math. Vol.3 (1980), pp 191-199. | Zbl 0462.10014

[021] [22] K. Ueno and M. Nishizawa, Quantum groups and zeta-functions in: J. Lukierski, Z.Popowicz and J.Sobczyk (eds.) 'Quantum Groups: Formalism and Applications' Proceedings of the XXX-th Karpacz Winter School. pp. 115-126 Polish Scientific Publishers PWN. hep-th/9408143. | Zbl 0874.17006

[022] [23] K. Ueno and M. Nishizawa, in preparation.

[023] [24] I. Vardi, Determinants of Laplacians and multiple gamma functions, SIAM. J. Math. Anal 19 (1988), pp. 493-507. | Zbl 0641.33003

[024] [25] M. F. Vignéras, L'équation fonctionnelle de la fonction zeta de Selberg de groupe modulaire PSL(2,Z), Asterisque. 61 (1979), pp. 235-249.

[025] [26] A. Voros, Spectral functions, Special functions and the Selberg zeta functions, Comm. Math. Phys. 110 (1987), pp. 431-465. | Zbl 0631.10025

[026] [27] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth edition, Cambrige Univ. Press. | Zbl 45.0433.02