Groupoids and compact quantum groups
Sheu, Albert
Banach Center Publications, Tome 38 (1997), p. 41-50 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252206
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p41bwm,
     author = {Sheu, Albert},
     title = {Groupoids and compact quantum groups},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {41-50},
     zbl = {0881.17014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p41bwm}
}
Sheu, Albert. Groupoids and compact quantum groups. Banach Center Publications, Tome 38 (1997) pp. 41-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p41bwm/

[000] [B-D] A. Belavin and V. Drinfeld, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Func. Anal. Appl. 16 (1982).

[001] [Co] A. Connes, A survey of foliation and operator algebras, Proc. Symp. Pure Math. Vol. 38, Part I, AMS, Providence, 1982, 521-628.

[002] [CuM] R. E. Curto and P. S. Muhly, C*-algebras of multiplication operators on Bergman spaces, J. Func. Anal. 64 (1985), 315-329. | Zbl 0583.46049

[003] [D] V. G. Drinfeld, Quantum groups, Proc. I.C.M. Berkeley 1986, Vol. 1, 789-820, Amer. Math. Soc., Providence, 1987.

[004] [H] H. Hiller, Geometry of Coxeter Groups, Research Notes in Math. Vol. 54, Pitman, Boston, 1982. | Zbl 0483.57002

[005] [La] C. Lance, An explicit description of the fundamental unitary for SU(2)q, Comm. Math. Phys. 164 (1994), 1-15. | Zbl 0818.17014

[006] [LeSo] S. Levendorskii and Ya. Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys., 139 (1991), 141-170.

[007] [LuWe] J. H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Diff. Geom. 31 (1990), 501-526. | Zbl 0673.58018

[008] [MRe] P. S. Muhly and J. N. Renault, C*-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982), 1-44. | Zbl 0509.46049

[009] [N] G. Nagy, On the Haar measure of the quantum SU(N) group, Comm. Math. Phys. 153 (1993), 217-228. | Zbl 0779.17015

[010] [Po] P. Podleś, Quantum spheres, Letters Math. Phys. 14 (1987), 193-202. | Zbl 0634.46054

[011] [Re] J. Renault, A Groupoid Approach to C*-algebras, Lecture Notes in Mathematics, Vol. 793, Springer-Verlag, New York, 1980. | Zbl 0433.46049

[012] [RTF] N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225. | Zbl 0715.17015

[013] [Ri1] M. A. Rieffel, Deformation quantization and operator algebras, in 'Proc. Symp.Pure Math., Vol. 51', AMS, Providence, 1990, pp. 411-423.

[014] [Ri2] M. A. Rieffel, Deformation quantization for actions of d, Memoirs of AMS, Vol. 106, No. 506, 1993.

[015] [Ri3] M. A. Rieffel, Compact quantum groups associated with toral subgroups, in 'Contemporary Mathematics', Vol. 145, AMS, Providence, 1993, pp. 465-491. | Zbl 0795.17017

[016] [Ri4] M. A. Rieffel, Non-compact quantum groups associated with abelian subgroups, Comm. Math. Phys., 171 (1995), 181-201. | Zbl 0857.17014

[017] [Sh1] A. J. L. Sheu, Reinhardt domains, boundary geometry and Toeplitz C*-algebras, Journal of Functional Analysis, 92 (1990), 264-311.

[018] [Sh2] A. J. L. Sheu, Quantization of the Poisson SU(2) and its Poisson homogeneous space - the 2-sphere, Comm. Math. Phys. 135 (1991), 217-232. | Zbl 0719.58042

[019] [Sh3] A. J. L. Sheu, Leaf-preserving quantizations of Poisson SU(2) are not coalgebra homomorphisms, Comm. Math. Phys., 172 (1995), 287-292. | Zbl 0839.46073

[020] [Sh4] A. J. L. Sheu, Symplectic leaves and deformation quantization, Proc. Amer. Math. Soc., 124 (1996), 95-100. | Zbl 0846.46046

[021] [Sh5] A. J. L. Sheu, Compact quantum groups and groupoid C*-algebras, to appear in J. Func. Anal.

[022] [So1] Ya. S. Soibelman, The algebra of functions on a compact quantum group, and its representations, Algebra Analiz. 2 (1990), 190-221. (Leningrad Math. J., 2 (1991), 161-178.)

[023] [So2] Ya. S. Soibelman, Irreducible representations of the function algebra on the quantum group SU(n), and Schubert cells% , Soviet Math. Dokl. 40 (1990), 34-38.

[024] [VSo1] L. L. Vaksman and Ya. S. Soibelman, Algebra of functions on the quantum group SU(2), Func. Anal. Appl. 22 (1988), 170-181.

[025] [VSo2] L. L. Vaksman and Ya. S. Soibelman, The algebra of functions on the quantum group SU(n+1), and odd-dimensional quantum spheres, Leningrad Math. J. 2 (1991), 1023-1042.

[026] [Wa] S. Wang, Classification of quantum groups SUq(n), preprint.

[027] [We] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523-557. | Zbl 0524.58011

[028] [Wo1] S. L. Woronowicz, Twisted SU(2) group: an example of a non-commutative differential calculus, Publ. RIMS. 23 (1987), 117-181.

[029] [Wo2] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665. | Zbl 0627.58034

[030] [Wo3] S. L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups, twisted SU(N) groups, Invent. Math. 93 (1988), 35-76. | Zbl 0664.58044

[031] [Wo4] S. L. Woronowicz, Quantum SU(2) and E(2) groups. Contraction procedure, Comm. Math. Phys. 149 (1992), 637-652. | Zbl 0759.17009