On quantum weyl algebras and generalized quons
Marcinek, WŁadysŁaw
Banach Center Publications, Tome 38 (1997), p. 397-402 / Harvested from The Polish Digital Mathematics Library

The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group. Quantization is described in terms of quantum Weyl algebras. The corresponding commutation relations and scalar product are also given.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252233
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p397bwm,
     author = {Marcinek, W\L adys\L aw},
     title = {On quantum weyl algebras and generalized quons},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {397-402},
     zbl = {0897.17018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p397bwm}
}
Marcinek, WŁadysŁaw. On quantum weyl algebras and generalized quons. Banach Center Publications, Tome 38 (1997) pp. 397-402. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p397bwm/

[000] [1] F. Wilczek, Phys. Rev. Lett. 48, 114 (1982).

[001] [2] O. W. Greenberg, Phys. Rev. Lett. 64 705 (1990), Phys. Rev. D 43, 4111 (1991).

[002] [3] Y. S. Wu, Phys. Rev. Lett. 52, 2103 (1984), Phys. Rev. Lett. 53, 111 (1984).

[003] [4] D. I. Fivel, Phys. Rev. Lett. 65, 3361, (1990).

[004] [5] D. Zagier, Commun. Math. Phys. 147, 199 (1992).

[005] [6] M. Bożejko, R. Speicher, Interpolation between bosonic and fermionic relations given by generalized Brownian motions. Preprint FSB 132-691, Heildelberg (1992) | Zbl 0843.60071

[006] [7] M. Scheunert, J. Math. Phys. 20, 712, (1979).

[007] [8] E. E. Demidov, On some aspects of the theory of quantum groups, Uspekhi Mat. Nauk 48, 39, (1993), in Russ. | Zbl 0839.17011

[008] [9] A. Borowiec, V. K. Kharchenko, Z. Oziewicz, Calculi on Clifford-Weyl and exterior algebras for Hecke braiding, Conferencia dictata por Zbigniew Oziewicz at Centro de Investigation en Matematicas, Guanajuato, Mexico, Seminario de Geometria, jueves 22 de abril de 1993 and at the Conference on Differential Geometric Methods, Ixtapa, Mexico, September 1993.

[009] [10] S. Majid, J. Geom. Phys. 13, 169, (1994).

[010] [11] W. Marcinek, On unital braidings and quantization, Preprint ITP UWr No 847 (1993) and Rep. Math. Phys. 34, 325, (1994).

[011] [12] W. Marcinek, Noncommutative geometry corresponding to arbitrary braidings, J. Math. Phys. 35, 2633, (1994). | Zbl 0807.58003

[012] [13] J. C. Baez, R-commutative geometry and quantization of Poisson algebras, Adv. Math. 95, 61 (1992). | Zbl 0785.46057

[013] [14] R. Rałowski, On deformations of commutation relation algebras, Preprint IFT UWr 890, (1995), q-alg/9506004.

[014] [15] W. Marcinek, On the deformation of commutation relations, in Proceedings of the XIII Workshop in Geometric Methods in Physics, July 1-7, 1994 Białowieża, Poland, ed. by J-P. Antoine et al, Plenum Press 1995.

[015] [16] J. C. Baez, Lett. Math. Phys. 23, 1333, (1991).

[016] [17] W. Marcinek and R. Rałowski, Particle operators from braided geometry, in 'Quantum Groups, Formalism and Applications' XXX Karpacz Winter School in Theoretical Physics, 1994, Eds. J. Lukierski et al., 149-154 (1995).

[017] [18] W. Marcinek and Robert Rałowski, On Wick Algebras with Braid Relations, Preprint IFT UWr 876/9, (1994) and J. Math. Phys. 36, 2803, (1995). | Zbl 0883.46047

[018] [19] W. Marcinek, On Commutation Relations for Quons, q-alg/9512015.

[019] [20] M. Bożejko, R. Speicher, Math. Ann. 300, 97, (1994).