The symmetry algebra and conserved Currents for Klein-Gordon equation on quantum Minkowski space
Klimek, MaŁgorzata
Banach Center Publications, Tome 38 (1997), p. 387-395 / Harvested from The Polish Digital Mathematics Library

The symmetry operators for Klein-Gordon equation on quantum Minkowski space are derived and their algebra is studied. The explicit form of the Leibniz rules for derivatives and variables for the case Z=0 is given. It is applied then with symmetry operators to the construction of the conservation law and the explicit form of conserved currents for Klein-Gordon equation.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252234
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p387bwm,
     author = {Klimek, Ma\L gorzata},
     title = {The symmetry algebra and conserved Currents for Klein-Gordon equation on quantum Minkowski space},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {387-395},
     zbl = {0882.53053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p387bwm}
}
Klimek, MaŁgorzata. The symmetry algebra and conserved Currents for Klein-Gordon equation on quantum Minkowski space. Banach Center Publications, Tome 38 (1997) pp. 387-395. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p387bwm/

[000] [1] M. Klimek, J. Phys. A: Math. & Gen. 26 (1993), 955.

[001] [2] M. Klimek, in Papers of the 3rd International Colloquium on Quantum Groups and Physics, Czechoslovak J.Phys. 44 (1994), 1049.

[002] [3] M. Klimek, J. Phys. A: Math. & Gen. 29 (1996), 1747.

[003] [4] M. Klimek, in preparation.

[004] [5] S. Majid, J.M.P. 34 (1993), 2045.

[005] [6] S. Majid, J.M.P. 34 (1993), 4843.

[006] [7] P. Podleś, Commun. Math. Phys. 181 (1996), 569.

[007] [8] P. Podleś and S.L. Woronowicz, On the Structure of Inhomogenous Quantum Groups, hep-th 9412058, UC Berkeley preprint PAM 631, to appear in Commun. Math. Phys. | Zbl 0881.17013

[008] [9] P. Podleś and S.L. Woronowicz, Commun. Math. Phys. 178 (1996), 61.

[009] [10] Y. Takahashi, An Introduction to Field Quantization, Pergamon Press, Oxford 1969 and references therein.