On path integration on noncommutative geometries
Kempf, Achim
Banach Center Publications, Tome 38 (1997), p. 379-386 / Harvested from The Polish Digital Mathematics Library

We discuss a recent approach to quantum field theoretical path integration on noncommutative geometries which imply UV/IR regularising finite minimal uncertainties in positions and/or momenta. One class of such noncommutative geometries arise as `momentum spaces' over curved spaces, for which we can now give the full set of commutation relations in coordinate free form, based on the Synge world function.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252236
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p379bwm,
     author = {Kempf, Achim},
     title = {On path integration on noncommutative geometries},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {379-386},
     zbl = {0890.46050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p379bwm}
}
Kempf, Achim. On path integration on noncommutative geometries. Banach Center Publications, Tome 38 (1997) pp. 379-386. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p379bwm/

[000] [1] A. Connes, Noncommutative geometry, AP (1994).

[001] [2] P. K. Townsend, Phys. Rev. D, Vol. 15, No 10 2795-2801 (1976).

[002] [3] D. Amati, M. Cialfaloni, G. Veneziano, Phys. Lett. B 216, 41 (1989).

[003] [4] M. Maggiore, Phys. Lett. B 319, 83 (1993).

[004] [5] L. J. Garay, Int. J. Mod. Phys. A10: 145 (1995).

[005] [6] A. Kempf, Lett. Math. Phys. 26: 1-12 (1992).

[006] [7] A. Kempf, J. Math. Phys., Vol. 34, No. 3, 969-987 (1993) .

[007] [8] A. Kempf, Proc. XXII DGM Conf. Sept. 93 Ixtapa (Mexico), Adv. Appl. Cliff. Alg. (Proc. Suppl. ) (S1) (1994).

[008] [9] A. Kempf, J. Math. Phys. 35 (9): 4483 (1994).

[009] [10] A. Kempf, Preprint DAMTP/94-33, hep-th/9405067, rev. version.

[010] [11] A. Kempf, Czech. J. Phys. (Proc. Suppl. ) 44, 11-12: 1041 (1994).

[011] [12] A. Kempf, G. Mangano, R. B. Mann, Phys. Rev. D52: 1108-1118 (1995).

[012] [13] A. Kempf, H. Hinrichsen, DAMTP/95-50, hep-th/9510144.

[013] [14] A. Kempf, G. Mangano, in preparation.

[014] [15] M. Arik, D. D. Coon, J. Math. Phys. 17: 524 (1975).

[015] [16] W. Pusz, S. Woronowicz, Rep. Math. Phys. 27, 231 (1989).

[016] [17] I. M. Burban, A. U. Klimyk, Lett. Math. Phys. 29, No1: 13 (1993).

[017] [18] R. P. Feynman, Dirac Memorial Lecture, `The reason for antiparticles' CUP (1987)

[018] [19] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, p. 285 Freeman & Co (1973).

[019] [20] Y. Yamashita, Gen. Rel. Grav., 16: 99 (1984).

[020] [21] N. D. Birrell, P. C. W. Davies, Quantum fields in curved space, CUP (1982). | Zbl 0476.53017

[021] [22] B. S. DeWitt, The Dynamical Theory of Groups and Fields, Gordon & Breach (1965). | Zbl 0169.57101

[022] [23] S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, CUP (1989). | Zbl 0677.53081

[023] [24] S. Doplicher, K. Fredenhagen, J. E. Roberts, Comm. Math. Phys. 172: 187 (1995).