Using 'twisted' realizations of the symmetric groups, we show that Bose and Fermi statistics are compatible with transformations generated by compact quantum groups of Drinfel'd type.
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p369bwm, author = {Fiore, Gaetano and Schupp, Peter}, title = {Statistics and quantum group symmetries}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {369-377}, zbl = {0889.17016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p369bwm} }
Fiore, Gaetano; Schupp, Peter. Statistics and quantum group symmetries. Banach Center Publications, Tome 38 (1997) pp. 369-377. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p369bwm/
[000] [1] W. Pusz, S. L. Woronowicz, Twisted Second Quantization, Reports on Mathematical Physics 27 (1989), 231-257. | Zbl 0707.47039
[001] [2] G. Fiore, P. Schupp, Identical Particles and Quantum Symmetries, Preprint LMU-TPW 95-10 (Munich University), hep-th 9508047, to appear in Nucl. Phys. B. | Zbl 1003.81504
[002] [3] V. G. Drinfeld, Quasi Hopf Algebras, Leningrad Math. J. 1 (1990), 1419.
[003] [4] V. G. Drinfeld, Doklady AN SSSR 273 (1983) (in Russian), 531-535.
[004] [5] B. Jurco, More on Quantum Groups from the Quantization Point of View, Commun. Math. Phys. 166 (1994), 63. | Zbl 0824.17013
[005] [6] O. Ogievetsky, W. B. Schmidke, J. Wess and B. Zumino, q-Deformed Poincaré Algebra, Commun. Math. Phys. 150 (1992) 495-518.
[006] [7] S. Majid, Braided Momentum in the q-Poincaré Group, J. Math. Phys. 34 (1993), 2045. | Zbl 0786.17013
[007] [8] M. Pillin, W. B. Schmidke and J. Wess, q-Deformed Relativistic One-Particle States, Nucl. Phys. B403 (1993), 223.
[008] [9] G. Fiore, The Euclidean Hopf algebra and its fundamental Hilbert space representations, J. Math. Phys. 36 (1995), 4363-4405; The q-Euclidean algebra and the corresponding q-Euclidean lattice, Int. J. Mod. Phys. A, in press.
[009] [10] F. Bonechi, R. Giachetti, E. Sorace, M. Tarlini, Deformation Quantization of the Heisenberg Group, Commun. Math. Phys. 169 (1995), 627-633. | Zbl 0833.17017
[010] [11] R. Engeldinger, On the Drinfel'd-Kohno Equivalence of Groups and Quantum Groups, Preprint LMU-TPW 95-13.
[011] [12] T. L. Curtright, G. I. Ghandour, C. K. Zachos, Quantum Algebra Deforming Maps, Clebsh-Gordan Coefficients, Coproducts, U and R Matrices, J. Math. Phys. 32 (1991), 676-688. | Zbl 0749.17011