Statistics and quantum group symmetries
Fiore, Gaetano ; Schupp, Peter
Banach Center Publications, Tome 38 (1997), p. 369-377 / Harvested from The Polish Digital Mathematics Library

Using 'twisted' realizations of the symmetric groups, we show that Bose and Fermi statistics are compatible with transformations generated by compact quantum groups of Drinfel'd type.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252192
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p369bwm,
     author = {Fiore, Gaetano and Schupp, Peter},
     title = {Statistics and quantum group symmetries},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {369-377},
     zbl = {0889.17016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p369bwm}
}
Fiore, Gaetano; Schupp, Peter. Statistics and quantum group symmetries. Banach Center Publications, Tome 38 (1997) pp. 369-377. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p369bwm/

[000] [1] W. Pusz, S. L. Woronowicz, Twisted Second Quantization, Reports on Mathematical Physics 27 (1989), 231-257. | Zbl 0707.47039

[001] [2] G. Fiore, P. Schupp, Identical Particles and Quantum Symmetries, Preprint LMU-TPW 95-10 (Munich University), hep-th 9508047, to appear in Nucl. Phys. B. | Zbl 1003.81504

[002] [3] V. G. Drinfeld, Quasi Hopf Algebras, Leningrad Math. J. 1 (1990), 1419.

[003] [4] V. G. Drinfeld, Doklady AN SSSR 273 (1983) (in Russian), 531-535.

[004] [5] B. Jurco, More on Quantum Groups from the Quantization Point of View, Commun. Math. Phys. 166 (1994), 63. | Zbl 0824.17013

[005] [6] O. Ogievetsky, W. B. Schmidke, J. Wess and B. Zumino, q-Deformed Poincaré Algebra, Commun. Math. Phys. 150 (1992) 495-518.

[006] [7] S. Majid, Braided Momentum in the q-Poincaré Group, J. Math. Phys. 34 (1993), 2045. | Zbl 0786.17013

[007] [8] M. Pillin, W. B. Schmidke and J. Wess, q-Deformed Relativistic One-Particle States, Nucl. Phys. B403 (1993), 223.

[008] [9] G. Fiore, The Euclidean Hopf algebra Uq(eN) and its fundamental Hilbert space representations, J. Math. Phys. 36 (1995), 4363-4405; The q-Euclidean algebra Uq(eN) and the corresponding q-Euclidean lattice, Int. J. Mod. Phys. A, in press.

[009] [10] F. Bonechi, R. Giachetti, E. Sorace, M. Tarlini, Deformation Quantization of the Heisenberg Group, Commun. Math. Phys. 169 (1995), 627-633. | Zbl 0833.17017

[010] [11] R. Engeldinger, On the Drinfel'd-Kohno Equivalence of Groups and Quantum Groups, Preprint LMU-TPW 95-13.

[011] [12] T. L. Curtright, G. I. Ghandour, C. K. Zachos, Quantum Algebra Deforming Maps, Clebsh-Gordan Coefficients, Coproducts, U and R Matrices, J. Math. Phys. 32 (1991), 676-688. | Zbl 0749.17011