The Hamiltonian for an extended Hubbard model with phonons as introduced by A. Montorsi and M. Rasetti is considered on a D-dimensional lattice. The symmetries of the model are studied in various cases. It is shown that for a certain choice of the parameters a superconducting holds as a true quantum symmetry, but only for D=1.
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p361bwm, author = {Cerchiai, Bianca and Schupp, Peter}, title = {Symmetries of an extended Hubbard Model}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {361-368}, zbl = {0872.17028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p361bwm} }
Cerchiai, Bianca; Schupp, Peter. Symmetries of an extended Hubbard Model. Banach Center Publications, Tome 38 (1997) pp. 361-368. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p361bwm/
[000] [1] J. Hubbard, Proc. R. Soc. London A 276 (1963) 238.
[001] [2] C. N. Yang, S. C. Zhang, Mod. Phys. Lett. B 4 (1990) 759.
[002] [3] C. N. Yang, Phys. Rev. Lett. 63 (1989) 2144.
[003] [4] A. Montorsi, M. Rasetti, Phys. Rev. Lett. 72 (1994) 1730.
[004] [5] B. L. Cerchiai, P. Schupp, On Quantum Groups in the Hubbard Model with Phonons, J. Phys. A, in press. | Zbl 0916.17030
[005] [6] T. Holstein, Ann. Phys. 8 (1959) 325.
[006] [7] A. L. Fetter, J. D. Walecka, Quantum Theory of Many Particle Systems, (McGraw Hill, New York, 1971) p. 396.
[007] [8] S. Robaszkiewicz, R. Micnas, J. Ranninger, Phys. Rev. B36 (1987) 180.
[008] [9] I. G. Lang, Y. A. Firsov, Sov. Phys. JETP 16 (1963) 1301.
[009] [10] S. Barišić, J. Labbé, J. Friedel, Phys. Rev. Lett. 25 (1970) 919.
[010] [11] M. Jimbo, Lett. Math. Phys. 11 (1986) 247.