We clarify some aspects of quantum group gauge theory and its recent generalisations (by T. Brzeziński and the author) to braided group gauge theory and coalgebra gauge theory. We outline the diagrammatic version of the braided case. The bosonisation of any braided group provides us a trivial principal bundle in three ways.
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p335bwm, author = {Majid, Shahn}, title = {Some remarks on quantum and braided group gauge theory}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {335-349}, zbl = {0884.58014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p335bwm} }
Majid, Shahn. Some remarks on quantum and braided group gauge theory. Banach Center Publications, Tome 38 (1997) pp. 335-349. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p335bwm/
[000] [1] T. Brzeziński and S. Majid, Quantum group gauge theory on quantum spaces. Commun. Math. Phys., 157:591-638, 1993. Erratum 167:235, 1995. | Zbl 0817.58003
[001] [2] T. Brzeziński and S. Majid, Quantum group gauge theory and Q-monopoles. In M. Olmo et al, editor, Anales de Física Monografías, volume 1, pages 75-78. CIEMAT/RSEF, Madrid, 1993.
[002] [3] T. Brzeziński, Translation map in quantum principal bundles. J. Geom. Phys., 20:347-368, 1996. | Zbl 0867.55015
[003] [4] P. Hajac, Strong connections on quantum principal bundles. Commun. Math. Phys., To appear, 1997. | Zbl 0873.58007
[004] [5] T. Brzeziński and S. Majid, Coalgebra gauge theory. Preprint, Damtp/95-74, 1995.
[005] [6] T. Brzeziński, Quantum homogeneous spaces as quantum quotient spaces. J. Math. Phys., 37:2388-2399, 1996. | Zbl 0878.17011
[006] [7] S. Majid, Diagrammatics of braided group gauge theory. Preprint, Damtp/96-31, 1996.
[007] [8] S. Majid, Braided momentum in the q-Poincaré group. J. Math. Phys., 34:2045-2058, 1993. | Zbl 0786.17013
[008] [9] S. Majid, Foundations of Quantum Group Theory. Cambridge Univeristy Press, 1995. | Zbl 0857.17009
[009] [10] S. Majid, Cross product quantization, nonabelian cohomology and twisting of Hopf algebras. In V.K. Dobrev, H.-D. Doebner and A.G. Ushveridze, editors, Generalised Symmetries in Physics, pages 13-41. World Sci., 1994.
[010] [11] Y. Doi, Equivalent crossed products for a Hopf algebra. Commun. Algebra, 17:3053-3085, 1989. | Zbl 0687.16008
[011] [12] S. Majid, Examples of braided groups and braided matrices. J. Math. Phys., 32:3246-3253, 1991. | Zbl 0821.16042
[012] [13] S. Majid, Quantum and braided linear algebra. J. Math. Phys., 34:1176-1196, 1993. | Zbl 0781.17005
[013] [14] S. Majid, Beyond supersymmetry and quantum symmetry (an introduction to braided groups and braided matrices). In M-L. Ge and H.J. de Vega, editors, Quantum Groups, Integrable Statistical Models and Knot Theory, pages 231-282. World Sci., 1993.
[014] [15] S. Majid, Braided groups and algebraic quantum field theories. Lett. Math. Phys., 22:167-176, 1991. | Zbl 0745.16019
[015] [16] S. Majid, Cross products by braided groups and bosonization. J. Algebra, 163:165-190, 1994. | Zbl 0807.16036
[016] [17] S. Majid, Quantum and braided Lie algebras. J. Geom. Phys., 13:307-356, 1994. | Zbl 0821.17007
[017] [18] S. Majid, Quasi-* structure on q-Poincaré algebras. J. Geom. Phys., To appear, 1997. | Zbl 0882.16025