A general theory of characteristic classes of quantum principal bundles is presented, incorporating basic ideas of classical Weil theory into the conceptual framework of noncommutative differential geometry. A purely cohomological interpretation of the Weil homomorphism is given, together with a geometrical interpretation via quantum invariant polynomials. A natural spectral sequence is described. Some interesting quantum phenomena appearing in the formalism are discussed.
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p303bwm, author = {Durdevic, Mico}, title = {Quantum principal bundles and their characteristic classes}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {303-313}, zbl = {0877.55008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p303bwm} }
Đurđević, Mićo. Quantum principal bundles and their characteristic classes. Banach Center Publications, Tome 38 (1997) pp. 303-313. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p303bwm/
[000] [1] R. Bott & W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag New-York (1982). | Zbl 0496.55001
[001] [2] A. Connes, Non-commutative differential geometry, Extrait des Publications Mathématiques, IHES 62 (1986).
[002] [3] A. Connes, Noncommutative Geometry, Academic Press (1994).
[003] [4] M. Đurđević, Geometry of Quantum Principal Bundles I, Commun Math Phys 175 (3) 457-521 (1996).
[004] [5] M. Đurđević, Geometry of Quantum Principal Bundles II-Extended Version, Preprint, Instituto de Matematicas, UNAM, México (1994).
[005] [6] M. Đurđević, Characteristic Classes of Quantum Principal Bundles, Preprint, Instituto de Matematicas, UNAM, México (1995).
[006] [7] M. Đurđević, General Frame Structures on Quantum Principal Bundles, Preprint, Instituto de Matematicas, UNAM, México (1995).
[007] [8] S. Kobayashi & K. Nomizu, Foundations of Differential Geometry, Interscience Publishers New York, London (1963). | Zbl 0119.37502
[008] [9] S. L. Woronowicz, Compact Matrix Pseudogroups, Commun Math Phys 111 613-665 (1987).
[009] [10] S. L. Woronowicz, Differential Calculus on Compact Matrix Pseudogroups/ Quantum Groups, Commun Math Phys 122 125-170 (1989). | Zbl 0751.58042