A generalisation of quantum principal bundles in which a quantum structure group is replaced by a coalgebra is proposed.
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p289bwm, author = {Brzezi\'nski, Tomasz}, title = {A note on coalgebra gauge theory}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {289-292}, zbl = {0884.58010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p289bwm} }
Brzeziński, Tomasz. A note on coalgebra gauge theory. Banach Center Publications, Tome 38 (1997) pp. 289-292. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p289bwm/
[000] [Brz95] T. Brzeziński, Quantum Homogeneous Spaces as Quantum Quotient Spaces, J. Math. Phys. 37 (1996) 2388. | Zbl 0878.17011
[001] [Brz96] T. Brzeziński, Crossed Products by a Coalgebra, Preprint DAMTP/96-28 (1996), q-alg/9603016.
[002] [BM93] T. Brzeziński and S. Majid, Quantum Group Gauge Theory on Quantum Spaces, Commun. Math. Phys. 157 (1993) 591; it ibid. 167 (1995) 235 (erratum). | Zbl 0817.58003
[003] [BM95] T. Brzeziński and S. Majid, Coalgebra Gauge Theory, Preprint DAMTP/95-74, (1995), q-alg/9602022.
[004] [Maj90] S. Majid, Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J.Algebra, 130 (1990) 17. | Zbl 0694.16008
[005] [Maj93] S. Majid, Beyond supersymmetry and quantum symmetry (an introduction to braided groups and braided matrices), In: M.L. Ge and H.J. de Vega, editors, Quantum Groups, Integrable Statistical Models and Knot Theory, 231-238, World Scientific, 1993.
[006] [Maj95] S. Majid, Quantum and braided Lie algebras, J. Geom. Phys. 13(1994)307.