A characterization of coboundary Poisson Lie groups and Hopf algebras
Zakrzewski, Stanisław
Banach Center Publications, Tome 38 (1997), p. 273-278 / Harvested from The Polish Digital Mathematics Library

We show that a Poisson Lie group (G,π) is coboundary if and only if the natural action of G×G on M=G is a Poisson action for an appropriate Poisson structure on M (the structure turns out to be the well known π+). We analyze the same condition in the context of Hopf algebras. A quantum analogue of the π+ structure on SU(N) is described in terms of generators and relations as an example.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252240
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p273bwm,
     author = {Zakrzewski, Stanis\l aw},
     title = {A characterization of coboundary Poisson Lie groups and Hopf algebras},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {273-278},
     zbl = {0893.22011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p273bwm}
}
Zakrzewski, Stanisław. A characterization of coboundary Poisson Lie groups and Hopf algebras. Banach Center Publications, Tome 38 (1997) pp. 273-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p273bwm/

[000] [1] V. G. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and the meaning of the classical Yang-Baxter equations, Soviet Math. Dokl. 27 (1983), 68-71.

[001] [2] V. G. Drinfeld, Quantum groups, Proc. ICM, Berkeley, 1986, vol.1, 789-820.

[002] [3] M. A. Semenov-Tian-Shansky, Dressing transformations and Poisson Lie group actions, Publ. Res. Inst. Math. Sci., Kyoto University 21 (1985), 1237-1260. | Zbl 0673.58019

[003] [4] J.-H. Lu and A. Weinstein, Poisson Lie Groups, Dressing Transformations and Bruhat Decompositions, J. Diff. Geom. 31 (1990), 501-526. | Zbl 0673.58018

[004] [5] J.-H. Lu, Multiplicative and affine Poisson structures on Lie groups, Ph.D. Thesis, University of California, Berkeley (1990).

[005] [6] S. Zakrzewski, Poisson structures on the Lorentz group, Lett. Math. Phys. 32 (1994), 11-23. | Zbl 0827.17016

[006] [7] S. Zakrzewski, Poisson homogeneous spaces, in: 'Quantum Groups, Formalism and Applications', Proceedings of the XXX Winter School on Theoretical Physics 14-26 February 1994, Karpacz, J. Lukierski, Z. Popowicz, J. Sobczyk (eds.), Polish Scientific Publishers PWN, Warsaw 1995, pp. 629-639.

[007] [8] S. L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), 35. | Zbl 0664.58044

[008] [9] J.-H. Lu, On the Drinfeld double and the Heisenberg double of a Hopf algebra, Duke Math. Journ. 74, No.3 (1994), 763-776. | Zbl 0815.16020