Contractions of Poisson-Lie groups are introduced by using Lie bialgebra contractions. As an application, contractions of SL(2,R) Poisson-Lie groups leading to (1+1) Poincaré and Heisenberg structures are analysed. It is shown how the method here introduced allows a systematic construction of the Poisson structures associated to non-coboundary Lie bialgebras. Finally, it is sketched how contractions are also implemented after quantization by using the Lie bialgebra approach.
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p261bwm, author = {Ballesteros, Angel and del Olmo, Mariano}, title = {Contractions of Poisson-Lie groups, Lie bialgebras and quantum deformations}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {261-271}, zbl = {0890.17003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p261bwm} }
Ballesteros, Angel; del Olmo, Mariano. Contractions of Poisson-Lie groups, Lie bialgebras and quantum deformations. Banach Center Publications, Tome 38 (1997) pp. 261-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p261bwm/
[000] [1] A. Ballesteros, Contractions of Lie bialgebras and quantum deformations of kinematical symmetries, Ph. D. Thesis (in Spanish), Universidad de Valladolid (1995).
[001] [2] A. Ballesteros, N.A. Gromov, F.J. Herranz, M.A. del Olmo and M. Santander, Lie bialgebra contractions and quantum deformations of quasi-orthogonal algebras, J. Math. Phys. 36 (1995), 5916. | Zbl 0868.17012
[002] [3] A. Ballesteros, F.J. Herranz, C.M. Pereña, M.A. del Olmo and M. Santander, Non standard quantum (1+1) Poincaré group: a T matrix approach, J. Phys. A: Math. Gen. 28 (1995), 7113. | Zbl 0885.17012
[003] [4] E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, Contractions of quantum groups, Lecture Notes in Mathematics n. 1510. Springer-Verlag, Berlín (1992) 221. | Zbl 0757.17011
[004] [5] V.G. Drinfel'd, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Sov. Math. Dokl. 27 (1983), 68.
[005] [6] E. Inönü and E.P. Wigner, Contractions of groups and representations, Proc. Natl. Acad. Sci. U. S. 39 (1953), 510. | Zbl 0050.02601
[006] [7] E.J. Saletan, Contractions of Lie groups, J. Math. Phys 2 (1961), 1. | Zbl 0098.25804
[007] [8] E. Weimar-Woods, The three-dimensional real Lie algebras and their contractions, J. Math. Phys 32 (1991), 2028. | Zbl 0751.17003