On representation theory of quantum SLq(2) groups at roots of unity
Kondratowicz, Piotr ; Podleś, Piotr
Banach Center Publications, Tome 38 (1997), p. 223-248 / Harvested from The Polish Digital Mathematics Library

Irreducible representations of quantum groups SLq(2) (in Woronowicz’ approach) were classified in J.Wang, B.Parshall, Memoirs AMS 439 in the case of q being an odd root of unity. Here we find the irreducible representations for all roots of unity (also of an even degree), as well as describe “the diagonal part” of the tensor product of any two irreducible representations. An example of a not completely reducible representation is given. Non-existence of Haar functional is proved. The corresponding representations of universal enveloping algebras of Jimbo and Lusztig are provided. We also recall the case of general q. Our computations are done in explicit way.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252182
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p223bwm,
     author = {Kondratowicz, Piotr and Podle\'s, Piotr},
     title = {On representation theory of quantum $SL\_{q}(2)$ groups at roots of unity},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {223-248},
     zbl = {0890.17017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p223bwm}
}
Kondratowicz, Piotr; Podleś, Piotr. On representation theory of quantum $SL_{q}(2)$ groups at roots of unity. Banach Center Publications, Tome 38 (1997) pp. 223-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p223bwm/

[000] [1] H. H. Andersen, J. Paradowski, Fusion categories arising from semisimple Lie algebras, Commun. Math. Phys. 169, (1995), 563-588. | Zbl 0827.17010

[001] [2] G. Cliff, A tensor product theorem for quantum linear groups at even roots of unity, J. Algebra 165, (1994), 566-575. | Zbl 0812.17012

[002] [3] C. De Concini, V. Lyubashenko, Quantum function algebra at roots of 1, Preprints di Matematica 5, Scuola Normale Superiore Pisa, February 1993. | Zbl 0846.17008

[003] [4] D. V. Gluschenkov, A. V. Lyakhovskaya, Regular Representation of the Quantum Heisenberg Double Uqsl(2),Funq(SL(2)) (q is a root of unity), UUITP - 27/1993, hep-th/9311075.

[004] [5] M. Jimbo, A q-analogue of U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11, (1986), 247-252. | Zbl 0602.17005

[005] [6] G. Lusztig, Modular representations and quantum groups, Contemporary Mathematics 82, (1989), 59-77. | Zbl 0665.20022

[006] [7] P. Podleś, Complex Quantum Groups and Their Real Representations, Publ. RIMS, Kyoto University 28, (1992), 709-745. | Zbl 0809.17003

[007] [8] N. Yu. Reshetikhin, L. A. Takhtadzyan, L. D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J., Vol. 1, No. 1, (1990), 193-225 . | Zbl 0715.17015

[008] [9] P. Roche, D. Arnaudon, Irreducible Representations of the Quantum Analogue of SU(2), Lett. Math. Phys. 17, (1989), 295-300. | Zbl 0694.17005

[009] [10] M. Takeuchi, Some topics on GLq(n), J. Algebra 147, (1992), 379-410. | Zbl 0760.16015

[010] [11] B. Parshall, J. Wang, Quantum linear groups, Memoirs Amer. Math. Soc. 439, Providence, 1991.

[011] [12] S. L. Woronowicz, Twisted SU(2) group. An example of a noncommutative differential calculus, Publ. RIMS, Kyoto University 23, (1987), 117-181. | Zbl 0676.46050

[012] [13] S. L. Woronowicz, Compact Matrix Pseudogroups, Commun. Math. Phys. 111, (1987), 613-665. | Zbl 0627.58034

[013] [14] S. L. Woronowicz, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups), Commun. Math. Phys. 122, (1989), 125-170. | Zbl 0751.58042

[014] [15] S. L. Woronowicz, The lecture 'Quantum groups' at Faculty of Physics, University of Warsaw (1990/91)

[015] [16] S. L. Woronowicz, New quantum deformation of SL(2,𝐂). Hopf algebra level, Rep. Math. Phys. 30, (1991), 259-269. | Zbl 0759.17010

[016] [17] S. L. Woronowicz, S. Zakrzewski, Quantum deformations of the Lorentz group. The Hopf *-algebra level, Comp. Math. 90, (1994), 211-243. | Zbl 0798.16026