We study a family of commuting selfadjoint operators , which satisfy, together with the operators of the family , semilinear relations , (, , are fixed Borel functions). The developed technique is used to investigate representations of deformations of the universal enveloping algebra U(so(3)), in particular, of some real forms of the Fairlie algebra .
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p21bwm, author = {Samo\u\i lenko, Yuri\u\i\ and Turowska, Lyudmila}, title = {Semilinear relations and *-representations of deformations of so(3)}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {21-40}, zbl = {1013.17504}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p21bwm} }
Samoĭlenko, Yuriĭ; Turowska, Lyudmila. Semilinear relations and *-representations of deformations of so(3). Banach Center Publications, Tome 38 (1997) pp. 21-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p21bwm/
[000] [1] Yu. N. Bespalov, Yu. S. Samoĭlenko, and V. S. Shul'man, On families of operators connected by semilinear relations, in: Application of Methods of Functional Analysis in Mathematical Physics, Math. Inst. Akad. Nauk Ukrain. SSR, Kiev, (1991), 28-51, (Russian).
[001] [2] C. Daskaloyannis, Generalized deformed oscillator and nonlinear algebras, J. Phys. A 24 (1991), L789-L794.
[002] [3] V. D. Drinfeld, Quantum groups, Zap. nauch. sem. LOMI. 115 (1980), 19-49.
[003] [4] D. B. Fairlie, Quantum deformations of SU(2), J. Phys. A: Math. Gen. 23 (1990), L183-L187. | Zbl 0715.17017
[004]
[005] [6] M. F. Gorodniy, G. B. Podkolzin, Irreducible representations of graduated Lie algebra, Spectral theory of operators and infinite-dimensional analisys, Math. Inst. Akad. Nauk Ukrain. SSR, Kiev, (1984), 66-77, (Russian).
[006] [7] P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, 1967. | Zbl 0144.38704
[007] [8] M. Jimbo, q-difference analogue of U(n) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69. | Zbl 0587.17004
[008] [9] M. Jimbo, Quantum R matrix related to the generalizated Toda system: an algebraic approach, Lect. Notes Phys. 246 (1986), 334-361.
[009] [10] P. E. T. Jοrgensen, L. M. Schmitt, and R. F Werner, Positive representation of general commutation relations allowing Wick ordering, Preprint Osnabrück, (1993).
[010] [11] A. A. Kirillov, Elements of the theory of representations, Springer, Berlin, (1970).
[011] [12] S. Klimek and A. Lesniewski, Quantum Riemann surfaces. I. The unit disc, Commun. Math. Phys. 146 (1992), 103 - 122. | Zbl 0771.46036
[012] [13] M. Havliček, A. U. Klimyk, E. Pelantová, Fairlie algebra : oscillator realizations, root of unity, reduction , J. Phys. A. (to appear) | Zbl 0961.81034
[013] [14] S. A. Kruglyak and Yu. S. Samoĭlenko, On unitary equivalence of collections of self-adjoint operators, Funct. Anal. i Prilozhen. 14 (1980), no. 1, 60 - 62, (Russian).
[014] [15] V. L. Ostrovskiĭ and Yu. S. Samoĭlenko, Unbounded operators satisfying non-Lie commutation relations, Repts. Math. Phys. 28 (1989), no. 1, 91-103.
[015] [16] V. L. Ostrovskyĭ and Yu. S. Samoĭlenko, On pairs of self-adjoint operators, Seminar Sophus Lie 3 (1993), no. 2, 185-218.
[016] [17] V. L. Ostrovskyĭ and Yu. S. Samoĭlenko, Representations of *-algebras and dynamical system, Non-linear Math. Phys. 2 (1995), no. 2, 133-150.
[017] [18] V. L. Ostrovskyĭ and Yu. S. Samoĭlenko, On representations of the Heisenberg relations for the quantum e(2) group, Ukr. Mat. Zhurn. 47 (1995), no. 5, 700-710.
[018] [19] V. L. Ostrovskyĭ and L. B. Turovskaya, Representations of *-algebras and multidimensional dynamical systems, Ukr. Mat. Zhurn. 47 (1995), no. 4, 488-497. | Zbl 0941.47015
[019] [20] A. Yu. Piryatinskaya and Yu. S. Samoĭlenko, Wild problems in representation theory of *-algebras with generators and relations, Ukr. Mat. Zhurn. 47 (1995), no. 1, 70-78. | Zbl 0939.16010
[020] [21] W. Pusz and S. L. Woronowicz, Twisted second quantization, Reports Math. Phys. 27 (1989), 231-257. | Zbl 0707.47039
[021] [22] N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), no. 1, 178-206.
[022] [23] W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).
[023] [24] Yu. S. Samoĭlenko, Spectral theory of families of selfadjoint operators, 'Naukova Dumka', Kiev (1984) (Russian).
[024] [25] Yu. S. Samoĭlenko, V. S. Shul'man and L. B. Turovskaya, Semilinear relations and their *-representations, Preprint Augsburg, 1995.
[025] [26] Yu. S. Samoĭlenko and L. B. Turovskaya, On *-representations of semilinear relations, in: Met hods of Functional Analysis in problems of Mathematical Physics, Inst. Math Acad. Sci Ukraine, Kiev, (1992), 97-108.
[026] [27] Yu. S. Samoĭlenko and L. B. Turowska, Representations of cubic semilinear relations and real forms of the Fairlie algebra, Repts. Math. Phys. (to appear).
[027] [28] K. Schmüdgen, Unbounded operator algebras and representation theory, Akademie-Verlag, Berlin, (1990).
[028] [29] V. S. Shul'man, Multiplication operators and spectral synthesis, Dokl. Akad. Nauk SSSR 313 (1990), no. 5, (1047-1051); English transl. in Soviet Math. 42 (1991), no. 1.
[029] [30] Ya. S. Soibelman and L. L. Vaksman, The algebra of functions on the quantum group SU(n+1) and odd-dimensional quantum spheres, Algebra i Analiz. 2 (1990), no. 5, 101-120.
[030] [31] L. Turovskaya, Representations of some real forms of , Algebras, groups and geometries, 12 (1995), 321-338. | Zbl 0848.17014
[031] [32] E. Ye. Vaisleb, Representations of relations which connect a family of commuting operators with non-sefadjoint one, Ukrain. Math. Zh. 42 (1990), 1258 - 1262, (Russian).
[032] [33] E. Ye. Vaisleb and Yu. S. Samoĭlenko, Representations of operator relations by unbounded operators and multi-dimensional dynamical systems, Ukrain. Math. Zh. 42 (1990), no. 9, 1011 - 1019, (Russian).
[033] [34] S. L. Woronowicz, Quantum E(2) group and its Pontryagin dual, Lett. Math. Phys. 23 (1991), 251 - 263. | Zbl 0752.17017
[034] [35] D. P. Zhelobenko, Compact Lie groups and their representations, 'Nauka', Moscow, (1970) (Russian). | Zbl 0228.22013