We give a systematic discussion of the relation between q-difference equations which are conditionally -invariant and subsingular vectors of Verma modules over (the Drinfeld-Jimbo q-deformation of a semisimple Lie algebra over ℂg or ℝ). We treat in detail the cases of the conformal algebra, = su(2,2), and its complexification, = sl(4). The conditionally invariant equations are the q-deformed d’Alembert equation and a new equation arising from a subsingular vector proposed by Bernstein-Gel’fand-Gel’fand.
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p203bwm, author = {Dobrev, Vladimir}, title = {Representations of quantum groups and (conditionally) invariant q-difference equations}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {203-222}, zbl = {0965.17010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p203bwm} }
Dobrev, Vladimir. Representations of quantum groups and (conditionally) invariant q-difference equations. Banach Center Publications, Tome 38 (1997) pp. 203-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p203bwm/
[000] [1] A.O. Barut and R. Rączka, Theory of Group Representations and Applications, II edition, (Polish Sci. Publ., Warsaw, 1980). | Zbl 0471.22021
[001] [2] I.N. Bernstein, I.M. Gel'fand and S.I. Gel'fand, Funkts. Anal. Prilozh. 5 (1) (1971) 1; English translation: Funct. Anal. Appl. 5 (1971) 1.
[002] [3] B. Binegar, C. Fronsdal and W. Heidenreich, J. Math. Phys. 24 (1983) 2828.
[003] [4] C. De Concini and V.G. Kac, Progress in Math. 92 (Birkhäuser, Boston, 1990) p. 471.
[004] [5] V.K. Dobrev, J. Math. Phys. 26 (1985) 235.
[005] [6] V.K. Dobrev, Rep. Math. Phys. 25 (1988) 159.
[006] [7] V.K. Dobrev, in: Proc. of the International Group Theory Conference (St. Andrews, 1989), eds. C.M. Campbell and E.F. Robertson, Vol. 1, London Math. Soc. Lect. Note Ser. 159 (1991) p. 87.
[007] [8] V.K. Dobrev, Lett. Math. Phys. 22 (1991) 251.
[008] [9] V.K. Dobrev, J. Phys. A26 (1993) 1317.
[009] [10] V.K. Dobrev, J. Phys. A27 (1994) 4841 & 6633, (first as preprint ASI-TPA/10/93 (1993)).
[010] [11] V.K. Dobrev, Phys. Lett. 341B (1994) 133 & 346B (1995) 427 (first as preprint ASI-TPA/15/94 (June 1994)).
[011] [12] V.K. Dobrev, preprint ASI-TPA/22/94, (September 1994); invited talk at the Symposium 'Symmetries in Science VIII', (August 1994, Bregenz, Austria), Proceedings, ed. B. Gruber, (Plenum Press, NY, 1995) p. 55.
[012] [13] V.K. Dobrev, Kazhdan-Lusztig polynomials and subsingular vectors, ICTP preprint IC/96/15 (January 1996).
[013] [14] V.K. Dobrev and R. Floreanini, J. Phys. A27 (1994) 4831.
[014] [15] V.G. Drinfeld, Soviet. Math. Dokl. 32 (1985) 2548; in: Proceedings of the International Congress of Mathematicians, Berkeley (1986), Vol. 1 (The American Mathematical Society, Providence, 1987) p. 798.
[015] [16] P. Furlan, V.B. Petkova and G.M. Sotkov, J. Math. Phys. 28 (1987) 251.
[016] [17] P. Furlan, V.B. Petkova, G.M. Sotkov and I.T. Todorov, Riv. del Nuovo Cim. 8 No 3 (1985) 1.
[017] [18] M. Jimbo, Lett. Math. Phys. 10 (1985) 63; Lett. Math. Phys. 11 (1986) 247.
[018] [19] D. Kazhdan and G. Lusztig, Inv. Math. 53 (1979) 165.
[019] [20] Abdus Salam and J. Strathdee, Phys. Rev. 184 (1969) 1760.
[020] [21] G.M. Sotkov and D.Ts. Stoyanov, J. Phys. A13 (1980) 2807; J. Phys. A16 (1983) 2817.
[021] [22] T. Yao, J. Math. Phys. 8 (1967) 1931; 9 (1968) 1615; 12 (1971) 315.