Left-covariant differential calculi on SLq(N)
Schmüdgen, Konrad ; Schüler, Axel
Banach Center Publications, Tome 38 (1997), p. 185-191 / Harvested from The Polish Digital Mathematics Library

We study N2-1 dimensional left-covariant differential calculi on the quantum group SLq(N). In this way we obtain four classes of differential calculi which are algebraically much simpler as the bicovariant calculi. The algebra generated by the left-invariant vector fields has only quadratic-linear relations and posesses a Poincaré-Birkhoff-Witt basis. We use the concept of universal (higher order) differential calculus associated with a given left-covariant first order differential calculus. It turns out that the space of left-invariant k-forms has the dimension N2-1k as in the case of the corresponding classical Lie group SL(N).

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252249
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p185bwm,
     author = {Schm\"udgen, Konrad and Sch\"uler, Axel},
     title = {Left-covariant differential calculi on $SL\_{q}(N)$
            },
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {185-191},
     zbl = {0882.58005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p185bwm}
}
Schmüdgen, Konrad; Schüler, Axel. Left-covariant differential calculi on $SL_{q}(N)$
            . Banach Center Publications, Tome 38 (1997) pp. 185-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p185bwm/

[000] [1] A. Connes, Non-commutative differential geometry, Publ. Math. IHES 62, 44-144 (1986).

[001] [2] L. K. Faddeev, N. Yu. Reshetikhin and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra and Analysis 1, 178-206 (1987).

[002] [3] K. Schmüdgen and A. Schüler, Classification of bicovariant differential calculi on quantum groups of type A, B, C and D, Commun. Math. Phys. 167, 635-670 (1995).

[003] [4] A. Sudbery, Non-commuting coordinates and differential operators, in: Quantum Groups, T. Curtright, D. Fairlie and C. Zachos (eds.), pp. 33-52, World Scientific, Singapore, 1991.

[004] [5] S. L. Woronowicz, Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. RIMS Kyoto Univ. 23, 177-181 (1987).

[005] [6] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122, 125-170 (1989). | Zbl 0751.58042