The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p171bwm, author = {Borowiec, Andrzej and Kharchenko, Vladislav and Oziewicz, Zbigniew}, title = {First order calculi with values in right-universal bimodules}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {171-184}, zbl = {0878.16017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p171bwm} }
Borowiec, Andrzej; Kharchenko, Vladislav; Oziewicz, Zbigniew. First order calculi with values in right-universal bimodules. Banach Center Publications, Tome 38 (1997) pp. 171-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p171bwm/
[000] [1] H. C. Baehr, A. Dimakis and F. Müller-Hoissen, Differential Calculi on Commutative Algebras, J. Phys. A: Math. Gen. 28 (1995), 3197-3222, hep-th/9412069. | Zbl 0864.58001
[001] [2] N. Bourbaki, Elements of mathematics.Algebra I.Chapters 1-3, Springer-Verlag, Berlin, 1989.
[002] [3] A. Borowiec, V. K. Kharchenko and Z. Oziewicz, On free differentials on associative algebra, in : Non-Associative Algebra and Its Applications, S. González (ed.), Kluwer Academic Publishers, Dordrecht 1994, ISBN 0-7923-3117-6, Mathematics and its Applications, vol. 303, 46-53, (hep-th/9312023). | Zbl 0833.58006
[003] [4] A. Borowiec and V. K. Kharchenko, Algebraic approach to calculi with partial derivatives, Siberian Advances in Mathematics 5, 2 (1995), 10-37. | Zbl 0852.16027
[004] [5] A. Borowiec and V. K. Kharchenko, Coordinate calculi on associative algebras, in : Quantum Group, Formalism and Applications, J. Lukierski, Z. Popowicz and J. Sobczyk (ed.), Polish Sci. Publ. PWN Ltd., Warszawa, 1995. ISBN 83-01-11770-2, 231-241, q-alg/9501018. | Zbl 0879.16023
[005] [6] A. Borowiec and V. K. Kharchenko, First order optimum calculi, Bull. Soc. Sci. Lett. Łódź v. 45, Ser. Recher. Deform. XIX, (1995), 75-88, q-alg/9501024. | Zbl 0883.16024
[006] [7] A. Borowiec, Cartan Pairs, Czech. J. Phys. 46, 12 (1996), 1197 (q-alg/9609011).
[007] [8] J. Cuntz and D. Quillen, Algebra Extension and Nonsingularity, J. Amer. Math. Soc. 8, 2 (1995), p. 251-289.
[008] [9] A. Dimakis, F. Müller-Hoissen and T. Striker, Non-commutative differential calculus and lattice gauge theory, J. Phys. A: Math. Gen. 26 (1993), 1927-1949. | Zbl 0789.58010
[009] [10] G. Maltsiniotis, Le Langage des Espaces et des Groupes Quantiques, Commun. Math. Phys. 151 (1993), 275-302. | Zbl 0783.17007
[010] [11] Yu. I. Manin, Notes on quantum groups and quantum de Rham complexes., Preprint, MPI/91-60 (1991).
[011] [12] E. E. Mukhin, Yang-Baxter operators and noncommutative de Rham complexes, Russian Acad. Sci. Izv. Math. 58, 2 (1994), 108-131 (in Russian). | Zbl 0846.17016
[012] [13] R. S. Pierce, Associative algebras, Graduate Texts in Mathematics # 88, Springer-Verlag, New York, 1982. | Zbl 0497.16001
[013] [14] W. Pusz and S. Woronowicz, Twisted second quantization, Reports on Mathematical Physics 27, 2 (1989), 231-257. | Zbl 0707.47039
[014] [15] W. Pusz, Twisted canonical anticommutation relations, Reports on Mathematical Phys. 27, 3 (1989), 349-360. | Zbl 0752.17035
[015] [16] K. Schmüdgen and A. Schüler, Classification of bicovariant calculi on quantum spaces and quantum groups, C. R. Acad. Sci. Paris 316 (1993), 1155-1160. | Zbl 0795.17019
[016] [17] J. Wess and B. Zumino, Covariant differential calculus on the quantum hyperplane, Nuclear Physics 18 B (1990), 303-312, Proc. Suppl. Volume in honor of R. Stora. | Zbl 0957.46514
[017] [18] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989), 125-170. | Zbl 0751.58042