On the classification of 3-dimensional coloured Lie algebras
Silvestrov, Sergei
Banach Center Publications, Tome 38 (1997), p. 159-170 / Harvested from The Polish Digital Mathematics Library

In this paper, complex 3-dimensional Γ-graded ε-skew-symmetric and complex 3-dimensional Γ-graded ε-Lie algebras with either 1-dimensional or zero homogeneous components are classified up to isomorphism.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:252193
@article{bwmeta1.element.bwnjournal-article-bcpv40z1p159bwm,
     author = {Silvestrov, Sergei},
     title = {On the classification of 3-dimensional coloured Lie algebras},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {159-170},
     zbl = {0930.17026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p159bwm}
}
Silvestrov, Sergei. On the classification of 3-dimensional coloured Lie algebras. Banach Center Publications, Tome 38 (1997) pp. 159-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv40z1p159bwm/

[000] [1] V. K. Agrawala, Invariants of generalized Lie algebras, Hadronic J. 4 (1981), 444-496. | Zbl 0455.17002

[001] [2] N. Backhouse, A classification of four-dimensional Lie superalgebras, J. Math. Phys. 19, 11 (1978), 2400-2402. | Zbl 0421.17002

[002] [3] Yu. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky and M. V. Zaicev, Infinite Dimensional Lie Superalgebras, Walter de Gruyter, Berlin, 1992.

[003] [4] R. Carles and Y. Diakité, Sur les variétés d'algèbres de Lie de dimension ≤ 7, J. Algebra 91 (1984), 53-63.

[004] [5] P. Cartier, Effacement Dans la Cohomologie des Algèbres de Lie, Séminaire Bourbaki 116 (1955), 1-7.

[005] [6] L. Corwin, Y. Ne'eman and S. Sternberg, Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry ), Rev. Modern Phys. 47, 3 (1975), 573-603. | Zbl 0557.17004

[006] [7] H. S. Green and P. D. Jarvis, Casimir invariants, characteristic identities and Young diagrams for Colour algebras and superalgebras, J. Math. Phys. 24, 7 (1983), 1681-1687. | Zbl 0517.17002

[007] [8] M. F. Gorodnii, G. B. Podkolzin, Irreducible representations of a graded Lie algebra, in 'Spectral theory of operators and infinite-dimensional analysis', Institute of Mathematics, Academy of Sciences of Ukraine, Kiev, (1984), 66-77.

[008] [9] V. G. Kac, Lie Superalgebras, Adv. Math. 26 (1977), 8-96.

[009] [10] V. G. Kac, Classification of simple Lie superalgebras, Funct. Anal. Appl. 9 (1975), 263-265. | Zbl 0331.17001

[010] [11] M. V. Karasev, V. P. Maslov, Non-Linear Poisson Brackets. Geometry and Quantization, Trans. Math. Monographs 119, AMS, Providence, 1993. | Zbl 0776.58003

[011] [12] A. A. Kirillov, Yu. A. Neretin, The variety An of n-dimensional Lie algebra structures, Am. Math. Soc. Transl. 137 (1987), 21-30.

[012] [13] R. Kleeman, Commutation factors on generalized Lie algebras, J. Math. Phys. 26, 10 (1985), 2405-2412. | Zbl 0574.17003

[013] [14] A. K. Kwasniewski, Clifford- and Grassmann- like algebras - Old and new, J. Math. Phys. 26 (1985), 2234-2238. | Zbl 0583.15018

[014] [15] A. K. Kwasniewski, On Graded Lie-like Algebras, Bulletin de la Société des sciences et des lettres de Łódź 39, 6 (1989).

[015] [16] J. Lukierski, V. Rittenberg, Color-de Sitter and color-conformal superalgebras, Phys. Rev. D 18, 2 (1978), 385-389.

[016] [17] G. M. Mubaragzjanov, Classification of the real structures for Lie algebras of fifth order, Izv. Vyssh. Uchebn. Zaved. Mat. 34, 3 (1963), 99-106, (Russian).

[017] [18] W. Marcinek, Colour extensions of Lie algebras and superalgebras, Preprint 746, University of Wrocław (1990).

[018] [19] W. Marcinek, Generalized Lie algebras and related topics, Acta Univ. Wratislaviensis (Matematyka, Fizyka, Astronomia) 1170 (1991) I, 3-21, II, 23-52.

[019] [20] M. V. Mosolova, Functions of non-commuting operators that generate a graded Lie algebra, Mat. Zametki 29 (1981), 34-45.

[020] [21] Yu. A. Neretin, An estimate for the number of parameters defining an n-dimensional algebra, Izv. Acad. Nauk. SSSR 51, 2 (1987), 306-318.

[021] [22] V. L. Ostrovskii, S. D. Silvestrov, Representations of the real forms of the graded analogue of a Lie algebra, Ukrain. Mat. Zh. 44, 11 (1992), 1518-1524; (English translation: Ukrainian Math. J. 44, 11 (1993), 1395-1401).

[022] [23] A. Pais, V. Rittenberg, Semisimple graded Lie algebras, J. Math. Phys. 16 (1975), 2062-2073. | Zbl 0311.17004

[023] [24] V. Rittenberg, D. Wyler, Generalized Superalgebras, Nucl. Phys. B 139 (1978), 189-202.

[024] [25] L. E. Ross, Representations of Graded Lie algebras, Trans. Amer. Math. Soc. 120 (1965), 17-23. | Zbl 0145.25903

[025] [26] Yu. S. Samoilenko, Spectral Theory of Families of Self-adjoint Operators, Kluwer, Dordrecht, 1990.

[026] [27] M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Mathematics 716 (1979), Springer-Verlag.

[027] [28] M. Scheunert, Generalized Lie algebras, J. Math. Phys. 20, 4 (1979), 712-720. | Zbl 0423.17003

[028] [29] M. Scheunert, Graded tensor calculus, J. Math. Phys. 24, 11 (1983), 2658-2670. | Zbl 0547.17003

[029] [30] M. Scheunert, Casimir elements of ε-Lie algebras, J. Math. Phys. 24, 11 (1983), 2671-2680. | Zbl 0527.17001

[030] [31] S. D. Silvestrov, Hilbert space representations of the graded analogue of the Lie algebra of the group of plane motions, Studia Mathematica 117, 2 (1996), 195-203. (Research report 12, Department of Mathematics, Umeå University, (1994)). | Zbl 0837.47039

[031] [32] E. B. Vinberg, V. V. Gorbacevich, A. L. Onischik, Structure of Lie groups and algebras, Itogi Nauki i Tekhniki, Sovremennye problemy matematiki, Fundamentalnye napravleniya, VINITI, Moscow 41 (1990), 1-260.

[032] [33] S. Yamaguchi, On some classes of nilpotent Lie algebras and their automorphism groups, Mem. Fac. Sci. Kyushu Univ. A 35, 2 (1981), 341-351. | Zbl 0477.17002