Symplectic capacities coinciding on convex sets in the standard symplectic vector space are extended to any subsets of symplectic manifolds. It is shown that, using embeddings of non-smooth convex sets and a product formula, calculations of some capacities become very simple. Moreover, it is proved that there exist such capacities which are distinct and that there are star-shaped domains diffeomorphic to the ball but not symplectomorphic to any convex set.
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p77bwm, author = {K\"unzle, Alfred}, title = {Symplectic Capacities in Manifolds}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {77-87}, zbl = {0949.37030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p77bwm} }
Künzle, Alfred. Symplectic Capacities in Manifolds. Banach Center Publications, Tome 38 (1997) pp. 77-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p77bwm/
[000] [A84] J. P. Aubin, L'analyse non linéaire et ses motivations économiques, Masson, Paris, 1984. | Zbl 0551.90001
[001] [CE80] F. H. Clarke, I. Ekeland, Hamiltonian trajectories with prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), 103-116. | Zbl 0403.70016
[002] [E90] I. Ekeland, Convexity methods in Hamiltonian mechanics, Springer, Berlin-Heidelberg, 1990.
[003] [EH89] I. Ekeland, H. Hofer, Symplectic Topology and Hamiltonian Dynamics I, Math. Z. 200 (1989), 355-378. See also C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 37-40. | Zbl 0641.53035
[004] [EH90] I. Ekeland, H. Hofer, Symplectic Topology and Hamiltonian Dynamics II, Math. Z. 203 (1990), 553-567. | Zbl 0729.53039
[005] [G85] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347. | Zbl 0592.53025
[006] [H91] M. Herman, Exemples de flots Hamiltoniens dont aucune perturbation en topologie n’a d’orbites périodiques sur un ouvert de surfaces d’énergies, C. R. Acad. Sci. Sér. I Math. 312 (1991), 989-994. | Zbl 0759.58016
[007] [HZ87] H. W. Hofer, E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math. 90 (1987), 1-9. | Zbl 0631.58022
[008] [HZ90] H. W. Hofer, E. Zehnder, A new capacity for symplectic manifolds, in: Analysis et cetera, Academic Press, 1990, 405-429.
[009] [HZ94] H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, Basel-Boston-Berlin, 1994. | Zbl 0805.58003
[010] [K90] A. F. Künzle, Une capacité symplectique pour les ensembles convexes et quelques applications, Ph.D. thesis, Université Paris IX Dauphine, June 1990.
[011] [K91] A. F. Künzle, The least characteristic action as symplectic capacity, preprint, Forschungsinstitut für Mathematik, ETH Zürich, May 1991.
[012] [K93] A. F. Künzle, Singular Hamiltonian systems and Symplectic Capacities, in: Singularities and Differential Equations, Banach Center Publ. 33 (1996), 171-187. | Zbl 0855.58027
[013] [R70] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton N.J., 1970.
[014] [Si93] K. F. Siburg, Symplectic capacities in two dimensions, Manuscripta Math. 78 (1993), 149-163. | Zbl 0791.58043
[015] [Si90] J. C. Sikorav, Systèmes Hamiltoniens et topologie symplectique, Lecture Notes, Dipartimento di Matematica dell'Università di Pisa, August 1990.
[016] [V87] C. Viterbo, A proof of the Weinstein conjecture in , Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 337-357.