Canonical functions of asymptotic diffraction theory associated with symplectic singularities
Hanyga, Andrzej
Banach Center Publications, Tome 38 (1997), p. 57-71 / Harvested from The Polish Digital Mathematics Library

A general method of deriving canonical functions for ray field singularities involving caustics, shadow boundaries and their intersections is presented. It is shown that many time-domain canonical functions can be expressed in terms of elementary functions and elliptic integrals.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208679
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p57bwm,
     author = {Hanyga, Andrzej},
     title = {Canonical functions of asymptotic diffraction theory associated with symplectic singularities},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {57-71},
     zbl = {0903.41018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p57bwm}
}
Hanyga, Andrzej. Canonical functions of asymptotic diffraction theory associated with symplectic singularities. Banach Center Publications, Tome 38 (1997) pp. 57-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p57bwm/

[000] [1] V. I. Arnol'd, A. N. Varchenko and S. M. Husein-Zade, Singularities of Differentiable Maps, Vol. I, Birkhäuser Verlag, Basel, 1985.

[001] [2] S. Benenti and W. M. Tulczyjew, The Geometrical Meaning and Globalization of the Hamilton-Jacobi Method, in: Differential geometrical methods in mathematical physics, Proc. Conf. Aix-en-Provence/Salamanca 1979, Lecture Notes in Math. 836, Springer, Berlin, 1980, 9-21.

[002] [3] M. G. Brown and F. D. Tappert, Causality, caustics and the structure of transient wavefields, J. Acoust. Soc. Amer. 85 (1986), 251-255.

[003] [4] R. Burridge, The reflection of a pulse in a solid sphere, Proc. Roy. Soc. London A276 (1962), 367-400. | Zbl 0114.17603

[004] [5] J. N. L. Connor, A method for the numerical evaluation of the oscillatory integrals associated with cuspoid catastrophes: applications to Pearcey's integral and its derivatives, J. Phys. A 15 (1982), 1179-1190. | Zbl 0485.65019

[005] [6] J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207-281. | Zbl 0285.35010

[006] [7] M. V. Fedoryuk, Saddle Point Method, Nauka, Moscow, 1977 (in Russian).

[007] [8] M. Golubitsky and V. Guillemin, Stable Mappings and their Singularities, Springer-Verlag, New York, 1973. | Zbl 0294.58004

[008] [9] V. Guillemin and S. Sternberg, Geometric Asymptotics, American Mathematical Society, Providence, RI, 1977.

[009] [10] A. Hanyga, Boundary effects in Asymptotic Diffraction Theory, Part I-III, Seismo-series (int. reports ISEP Univ. of Bergen), Vol. 35-37, Bergen, 1989.

[010] [11] A. Hanyga, Local behaviour of wavefields at simple caustics, Seismo-series (int. reports ISEP Univ. of Bergen), Vol. 38, 1989.

[011] [12] A. Hanyga, Numerical applications of Asymptotic Diffraction Theory, in: Mathematical and Numerical Aspects of Wave Propagation, Univ. of Delaware, June 1993, R. Kleinman et al. (eds.), SIAM, Philadelphia, 1993. | Zbl 0815.35112

[012] [13] A. Hanyga, Asymptotic Diffraction Theory applied to edge-vertex diffraction, in: Proc. 7th Conference on Waves and Stability in Continuous Media, Bologna, Nov. 1993, S. Rionero & T. Ruggeri (eds.), World Scientific Publishing, Singapore, 1994. | Zbl 0815.35112

[013] [14] A. Hanyga, Asymptotic vertex and edge diffraction, Geophys. J. Int. 122 (1995), 277-290.

[014] [15] A. Hanyga and M. Seredyńska, Diffraction of pulses in the vicinity of simple caustics and caustic cusps, Wave Motion 14 (1991), 101-121. | Zbl 0751.35048

[015] [16]S. Janeczko, On isotropic submanifolds and evolution of quasi-caustics, Pacific J. Math. 158 (1993), 317-334. | Zbl 0806.58023

[016] [17] S. Janeczko and G. Plotnikova, Sur la structure de quasi-caustiques en diffraction géometrique, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 543-546. | Zbl 0714.58019

[017] [18] J. B. Keller, Geometrical Theory of Diffraction, J. Opt. Soc. Amer. 52 (1966), 116-130.

[018] [19] Yu. A. Kravtsov and Yu. I. Orlov, Caustics, Catastrophes and Wave Fields, Springer-Verlag, Berlin, 1993.

[019] [20] V. P. Maslov and V. M. Fedoryuk, Semi-classical approximation in quantum mechanics, D. Reidel, Doordrecht, 1981. | Zbl 0458.58001

[020] [21] F. Pham, Singularités des systèmes differentiels de Gauss-Manin, Progr. Math. 2, Birkhäuser, Basel, 1979. | Zbl 0524.32015

[021] [22] T. Poston and I. Stewart, Catastrophe Theory and Its Applications, Pitman, London, 1978. | Zbl 0382.58006

[022] [23] D. Siersma, Singularities of functions on boundaries, corners etc., Quart. J. Math. Oxford (2) 32 (1981), 119-127. | Zbl 0417.58002

[023] [24] D. Stickler, D. S. Ahluwalia and L. Ting, Application of Ludwig's uniform progressing wave ansatz to a smooth caustic, J. Acoust. Soc. Amer. 69 (1981), 1673-1681. | Zbl 0533.73036

[024] [25] A. Weinstein, Lectures on Symplectic Manifolds, in: CBMS Conference Series, American Mathematical Society, Vol. 29, Providence, RI, 1977.