The article reviews attempts to formulate the theory of gauge fields in terms of a string theory.
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p363bwm, author = {Pawe\l czyk, Jacek}, title = {String picture of gauge fields}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {363-371}, zbl = {0881.57017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p363bwm} }
Pawełczyk, Jacek. String picture of gauge fields. Banach Center Publications, Tome 38 (1997) pp. 363-371. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p363bwm/
[000] [1] M. F. Atiyah and L. Jeffrey, Topological lagrangians and cohomology, J. Geom. Phys. 7 (1990) 119. | Zbl 0721.58056
[001] [2] W. A. Bardeen, I. Bars, A. J. Hanson and R. D. Peccei, Study of the longitudinal kink modes of the string, Phys. Rev. D 13 (1976), 2364.
[002] [3] I. Bars, A quantum string theory of hadrons and its relation to quantum chromodynamics in two dimensions, Nuclear Phys. B 111 (1976), 1744.
[003] [4] S. J. Blank and C. Curley, Desingularizing maps of corank one, Proc. Amer. Math. Soc. 80 (1980), 483. | Zbl 0453.58012
[004] [5] S. Corder, G. Moore and S. Ramgoolam, Large N 2D Yang-Mills theory and topological string theory, Yale preprint YCTP-P23-93; hep-th/9402107.
[005] [6] W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542. | Zbl 0194.21901
[006] [7] M. Golubitsky, V. Guillemin, Stable Mappings and Their Singularities, Springer, New York - Heidelberg, 1973. | Zbl 0294.58004
[007] [8] D. J. Gross, Two-dimensional QCD as a string theory, 400 (1993), 161; hep-th/9212149. | Zbl 0941.81580
[008] [9] D. J. Gross and W. Taylor, IV, Twists and loops in the string theory of two-dimensional QCD, 403 (1993), 395; hep-th/9303076. | Zbl 1030.81518
[009] [10] D. J. Gross and W. Taylor, IV, Two-dimensional QCD is a string theory, 400 (1993), 181; hep-th/9301068.
[010] [11] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), 23. | Zbl 0506.14016
[011] [12] W. Hirsch, Immersions of Manifolds, Trans. Amer. Math. Soc. 93 (1959), 242. | Zbl 0113.17202
[012] [13] G. 't Hooft, A planar diagram theory for strong interactions, 72 (1974), 461.
[013] [14] G. 't Hooft, A two-dimensional model for mesons, 75 (1974), 461.
[014] [15] P. Horava, Topological Rigid String Theory and Two Dimensional QCD, PUPT-1547, June 1995; hep-th/9507060.
[015] [16] P. Horava, Topological Strings and QCD in Two Dimensions, to appear in: Proc. of The Cargese Workshop, 1993; hep-th/9311156.
[016] [17] R. Lashof and S. Smale, On immersions of manifolds in Euclidean space, 68 (1958), 562. | Zbl 0097.38805
[017] [18] V. Mathai and D. Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), 85. | Zbl 0592.55015
[018] [19] A. Migdal, Recursion equations in gauge field theories, Zh. Èksp. Teoret. Fiz. 69 (1975), 810; translated in Sov. Phys. JETP 42 (1975), 413.
[019] [20] J. Pawełczyk, Immersions and folds in string theories of gauge fields, Internat. J. Modern Phys. A 11 (1996), 2661; hep-th/9604053. | Zbl 1044.81700
[020] [21] J. Pawełczyk, Two-dimensional string-theory model with no folds, 74 (1995), 3924; hep-th/9403175.
[021] [22] B. Rusakov, Loop averages and partition function in U(N) gauge theory on two-dimensional manifolds, 5 (1990), 693.
[022] [23] S. Smale, Regular curves on Riemannian manifolds, Trans. Amer. Math. Soc. 87 (1958), 492. | Zbl 0081.38103
[023] [24] S. Smale, The classification of immersions of spheres in Euclidean spaces, 69 (1959), 327. | Zbl 0089.18201
[024] [25] W. Thurston, The Geometry and Topology of Three-manifolds, Ch. 13, Princeton notes, 1977 (unpublished).
[025] [26] H. Whitney, On singularities of maps of Euclidean spaces: case, Ann. of Math. (2) 62 (1955), 374.
[026] [27] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, 45 (1944), 220. | Zbl 0063.08237
[027] [28] E. Witten, Topological quantum field theory, 117 (1988), 353. | Zbl 0656.53078