We discuss the geometry of the Yang-Mills configuration spaces and moduli spaces with respect to the metric. We also consider an application to a de Rham-theoretic version of Donaldson’s μ-map.
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p317bwm, author = {Groisser, David}, title = {The $L^2$ metric in gauge theory: an introduction and some applications}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {317-329}, zbl = {0915.53014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p317bwm} }
Groisser, David. The $L^2$ metric in gauge theory: an introduction and some applications. Banach Center Publications, Tome 38 (1997) pp. 317-329. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p317bwm/
[000] [CE] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975. | Zbl 0309.53035
[001] [DMM] H. Doi, Y. Matsumoto, and T. Matumoto, An explicit formula of the metric on the moduli space of BPST-instantons over , in: A Fête of Topology, Academic Press, 1987, 543-556.
[002] [D1] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), 279-315. | Zbl 0507.57010
[003] [D2] S. K. Donaldson, Compactification and completion of Yang-Mills moduli spaces, in: Differential Geometry, Proc. Conf. Peniscola 1988, F. J. Carreras et al. (ed.), Lecture Notes in Math. 1410, Springer, Berlin, 1989, 145-160.
[004] [DK] S. K. Donaldson, P. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, New York, 1990. | Zbl 0820.57002
[005] [F] P. Feehan, Geometry of the ends of the moduli space of anti-self-dual connections, J. Differential Geom. 42 (1995), 465-553. | Zbl 0856.58007
[006] [FU] D. S. Freed and K. K. Uhlenbeck, Instantons and Four-Manifolds, second edition, Springer, New York, 1991. | Zbl 0559.57001
[007] [G1] D. Groisser, The geometry of the moduli space of instantons, Invent. Math. 99 (1990), 393-409.
[008] [G2] D. Groisser, Curvature of Yang-Mills moduli spaces near the boundary, I, Comm. Anal. Geom. 1 (1993), 139-216. | Zbl 0846.58012
[009] [G3] D. Groisser, Totally geodesic boundaries of Yang-Mills moduli spaces, Preprint, 1996.
[010] [GP1] D. Groisser and T. H. Parker, The Riemannian geometry of the Yang-Mills Moduli Space, Comm. Math. Phys. 112 (1987), 663-689. | Zbl 0637.53037
[011] [GP2] D. Groisser and T. H. Parker, The geometry of the Yang-Mills moduli space for definite manifolds, J. Differential Geom. 29 (1989), 499-544. | Zbl 0679.53024
[012] [GP3] D. Groisser and T. H. Parker, Semiclassical Yang-Mills Theory I, Instantons, Comm. Math. Phys. 135 (1990), 101-140. | Zbl 0792.53024
[013] [GP4] D. Groisser and T. H. Parker, Differential forms on the Yang-Mills moduli space, in preparation.
[014] [GS] D. Groisser and L. Sadun, Simple type and the boundary of moduli space, in preparation. | Zbl 0973.57014
[015] [H] L. Habermann, On the geometry of the space of Sp(1)-instantons with Pontrjagin index 1 on the 4-sphere, Ann. Global Anal. Geom. 6 (1988), 3-29. | Zbl 0667.53053
[016] [K] K. Kobayashi, Three Riemannian metrics on the moduli space of 1-instantons over , Hiroshima Math. J. 19 (1989), 243-249. | Zbl 0715.53028
[017] [MM] K. B. Marathe and G. Martucci, The Mathematical Foundations of Gauge Theories, North-Holland, Amsterdam, 1992. | Zbl 0920.58079
[018] [M] T. Matumoto, Three Riemannian metrics on the moduli space of BPST-instantons over , Hiroshima Math. J. 19 (1989), 221-224. | Zbl 0736.58006
[019] [MV] P. K. Mitter and C. M. Viallet, On the bundle of connections and the gauge orbit manifold in Yang-Mills theory, Comm. Math. Phys. 79 (1981), 457-472. | Zbl 0474.58004
[020] [S] I. M. Singer, The Geometry of the Orbit Space for Nonabelian Gauge Theories, Phys. Scripta 24 (1981), 817-820. | Zbl 1063.81623