The configuration space of gauge theory on open manifolds of bounded geometry
Eichhorn, Jürgen ; Heber, Gerd
Banach Center Publications, Tome 38 (1997), p. 269-286 / Harvested from The Polish Digital Mathematics Library

We define suitable Sobolev topologies on the space 𝒞P(Bk,f) of connections of bounded geometry and finite Yang-Mills action and the gauge group and show that the corresponding configuration space is a stratified space. The underlying open manifold is assumed to have bounded geometry.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208667
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p269bwm,
     author = {Eichhorn, J\"urgen and Heber, Gerd},
     title = {The configuration space of gauge theory on open manifolds of bounded geometry},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {269-286},
     zbl = {0890.58002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p269bwm}
}
Eichhorn, Jürgen; Heber, Gerd. The configuration space of gauge theory on open manifolds of bounded geometry. Banach Center Publications, Tome 38 (1997) pp. 269-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p269bwm/

[000] [1] N. Bourbaki, Éléments de mathématique, Fasc. XXXIII, Variétés différentielles et analytiques, Fascicule de résultates (Paragraphes 1 à 7), Hermann, Paris, 1971. | Zbl 0206.50402

[001] [2] N. Bourbaki, Éléments de mathématique, Fasc. XXXVIII, Groupes et algèbres de Lie, Hermann, Paris, 1972. | Zbl 0244.22007

[002] [3] J. Eichhorn, Elliptic differential operators on noncompact manifolds, in: Seminar Analysis of the Karl-Weierstrass-Institute of Mathematics (Berlin, 1986/87), Teubner-Texte Math. 106, Leipzig, 1988, 4-169.

[003] [4] J. Eichhorn, Gauge theory on open manifolds of bounded geometry, Internat. J. Modern Phys. A 7 (1992), 3927-3977.

[004] [5] J. Eichhorn, The manifold structure of maps between open manifolds, Ann. Global Anal. Geom. 11 (1993), 253-300. | Zbl 0840.58014

[005] [6] J. Eichhorn, Spaces of Riemannian metrics on open manifolds, Results Math. 27 (1995), 256-283. | Zbl 0833.58008

[006] [7] J. Eichhorn, The boundedness of connection coefficients and their derivatives, Math. Nachr. 152 (1991), 145-158. | Zbl 0736.53031

[007] [8] J. Eichhorn, Differential operators with Sobolev coefficients, in preparation.

[008] [9] J. Eichhorn, The invariance of Sobolev spaces over noncompact manifolds, in: Symposium 'Partial Differential Equations' (Holzhau, 1988), Teubner-Texte Math. 112, Leipzig, 1989, 73-107.

[009] [10] J. Eichhorn and J. Fricke, The module structure theorem for Sobolev spaces on open manifolds, Math. Nachr. (to appear). | Zbl 0954.46020

[010] [11] J. Eichhorn and R. Schmid, Form preserving diffeomorphisms on open manifolds, Math. Nachr. (to appear). | Zbl 0862.58007

[011] [12] A. E. Fischer, The internal symmetry group of a connection on a principal fibre bundle with applications to gauge field theory, Comm. Math. Phys. 113 (1987), 231-262. | Zbl 0638.53039

[012] [13] G. Heber, Die Topologie des Konfigurationsraumes der Yang-Mills Theorie über offenen Mannigfaltigkeiten beschränkter Geometrie, Ph.D. thesis, Greifswald, 1994.

[013] [14] W. Kondracki and J. Rogulski, On the stratification of the orbit space for the action of automorphisms on connections, Dissertationes Math. (Rozprawy Mat.) 250 (1986). | Zbl 0614.57025

[014] [15] W. Kondracki and P. Sadowski, Geometric structure on the orbit space of gauge connections, J. Geom. Phys. 3 (1986), 421-434. | Zbl 0624.53055