We prove the existence of the path-integral measure of two-dimensional Yang-Mills theory, as a probabilistic Radon measure on the "generalized orbit space" of gauge connections modulo gauge transformations, suitably completed following the approach of Ashtekar and Lewandowski.
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p225bwm, author = {Budzy\'nski, Robert}, title = {On the existence of the functional measure for 2D Yang-Mills theory}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {225-229}, zbl = {0890.28008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p225bwm} }
Budzyński, Robert. On the existence of the functional measure for 2D Yang-Mills theory. Banach Center Publications, Tome 38 (1997) pp. 225-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p225bwm/
[000] [1] A. Ashtekar, J. Lewandowski, Projective techniques and functional integration, J. Math. Phys. 36 (1995), 2170-2191. | Zbl 0844.58009
[001] [2] J. Dixmier, Les -algèbres et leurs représentations, Gauthier-Villars, Paris, 1969.
[002] [3] J. Fröhlich, Some results and comments on quantized gauge fields, in: Recent Developments in Gauge Theories, G. 't Hooft et al. (eds.), Plenum, 1980, 53-82.
[003] [4] S. Klimek, W. Kondracki, A construction of two-dimensional quantum chromodynamics, Comm. Math. Phys. 113 (1987), 389-402. | Zbl 0629.58037
[004] [5] B. E. Rusakov, Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds, Modern Phys. Lett. A 5 (1990), 693-703. | Zbl 1020.81716