Translation foliations of codimension one on compact affine manifolds
Turiel, Francisco
Banach Center Publications, Tome 38 (1997), p. 171-182 / Harvested from The Polish Digital Mathematics Library

Consider two foliations 1 and 2, of dimension one and codimension one respectively, on a compact connected affine manifold (M,). Suppose that T1T2T2; T2T1T1 and TM=T1T2. In this paper we show that either 2 is given by a fibration over S1, and then 1 has a great degree of freedom, or the trace of 1 is given by a few number of types of curves which are completely described. Moreover we prove that 2 has a transverse affine structure.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208660
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p171bwm,
     author = {Turiel, Francisco},
     title = {Translation foliations of codimension one on compact affine manifolds},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {171-182},
     zbl = {0897.53023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p171bwm}
}
Turiel, Francisco. Translation foliations of codimension one on compact affine manifolds. Banach Center Publications, Tome 38 (1997) pp. 171-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p171bwm/

[000] [1] R. Brouzet, P. Molino and F. J. Turiel, Géométrie des systèmes bihamiltoniens, Indag. Math. (N.S.) 4(3) (1993), 269-296.

[001] [2] G. Châtelet and H. Rosenberg, Manifolds which admit 𝐑𝐧 actions, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 245-260. | Zbl 0305.57031

[002] [3] G. Darboux, Leçons sur la Théorie générale de Surfaces, Gauthier-Villars, Paris.

[003] [4] C. Godbillon, Feuilletages: études géométriques, Progr. Math. 98, Birkhäuser, 1991.

[004] [5] I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and Bihamiltonian systems, J. Funct. Anal. 99 (1991), 150-178. | Zbl 0739.58021

[005] [6] G. Hector, Quelques exemples de feuilletages-Espèces rares, Ann. Inst. Fourier (Grenoble) 26(1) (1976), 239-264. | Zbl 0313.57015

[006] [7] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part B, Aspects Math. E3, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1987. | Zbl 0704.57001

[007] [8] R. Sacksteder, Foliations and pseudo-groups, Amer. J. Math. 87 (1965), 79-102. | Zbl 0136.20903

[008] [9] B. Seke, Sur les structures transversalement affines des feuilletages de codimension un, Ann. Inst. Fourier (Grenoble) 30(1) (1980), 1-29. | Zbl 0417.57011